首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yiqing Li  Ming Xu  Xiaoming Zou 《Plant and Soil》2006,281(1-2):193-201
We examined the correlation between fungal and bacterial biomass, abiotic factors such as soil moisture, carbon in the light soil fraction and soil nitrogen to a depth of 0–25 cm and heterotrophic soil respiration using a trenching technique – in a secondary forest (Myrcia splendens, Miconia prasina and Casearia arborea) and a pine (Pinus caribeae) plantation in the Luquillo Experimental Forest in Puerto Rico. Soil respiration was significantly reduced where roots were excluded for 7 years in both the secondary forest and the pine plantation. Microbial biomass was also significantly reduced in the root exclusion plots. In root exclusion treatment, total fungal biomass was on average 31 and 65% lower than the control plots in the pine plantation and the secondary forest, respectively, but the total bacterial biomass was 24 and 8.3% lower than the control plots in the pine plantation and the secondary forest, respectively. Heterotrophic soil respiration was positively correlated with fungal biomass (R2=0.63, R2=0.39), bacterial biomass (R2=0.16, R2=0.45), soil moisture (R2=0.41, R2=0.56), carbon in light fraction (R2=0.45, R2=0.39) and total nitrogen (R2=0.69, R2=0.67) in the pine plantation and the secondary forest, respectively. The regression analysis suggested that fungal biomass might have a greater influence on heterotrophic soil respiration in the pine plantation, while the bacterial biomass might have a greater influence in the secondary forest. Heterotrophic soil respiration was more sensitive to total N than to carbon in the light fraction, and soil moisture was a major factor influencing heterotrophic soil respiration in these forests where temperature is high and relatively invariable.  相似文献   

2.
Tree root systems, which play a major role in below-ground carbon (C) dynamics, are one of the key research areas for estimating long-term C cycling in forest ecosystems. In addition to regulating major C fluxes in the present conditions, tree root systems potentially hold numerous controls over forest responses to a changing environment. The predominant contribution of tree root systems to below-ground C dynamics has been given little emphasis in forest models. We developed the TRAP model, i.e. Tree Root Allocation of Photosynthates, to predict the partitioning of photosynthates between the fine and coarse root systems of trees among series of soil layers. TRAP simulates root system responses to soil stress factors affecting root growth. Validation data were obtained from two Belgian experimental forests, one mostly composed of beech (Fagus sylvatica L.) and the other of Scots pine (Pinus sylvestris L.). TRAP accurately predicted (R = 0.88) night-time CO2 fluxes from the beech forest for a 3-year period. Total fine root biomass of beech was predicted within 6% of measured values, and simulation of fine root distribution among soil layers was accurate. Our simulations suggest that increased soil resistance to root penetration due to reduced soil water content during summer droughts is the major mechanism affecting the distribution of root growth among soil layers of temperate Belgian forests. The simulated annual rate of C input to soil litter due to the fine root turnover of the Scots pine was 207 g C m–2 yr–1. The TRAP model predicts that fine root turnover is the single most important source of C to the temperate forest soils of Belgium.  相似文献   

3.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass using trenching and tent separation techniques in a secondary forest (SF) and a pine (Pinus caribaea Morelet) plantation in the Luquillo Experimental Forest in Puerto Rico. Soil surface CO2 efflux was measured using the alkali trap method at 12 randomly-distributed locations in each treatment (control, root exclusion, litter exclusion, and both root and litter exclusion) in the plantation and the SF, respectively. We measured soil CO2 efflux every two months and collected soil samples at each sampling location in different seasons to determine microbial biomass from August 1996 to July 1997. We found that soil CO2 efflux was significantly reduced in the litter and root exclusion plots (7-year litter and/or root exclusion) in both the secondary forest and the pine plantation compared with the control. The reduction of soil CO2 efflux was 35.6% greater in the root exclusion plots than in the litter exclusion plots in the plantation, whereas a reversed pattern was found in the secondary forest. Microbial biomass was also reduced during the litter and root exclusion period. In the root exclusion plots, total fungal biomass averaged 31.4% and 65.2% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 24% and 8.3% lower than the control plots in the plantation and the secondary forest, respectively. In the litter exclusion treatment, total fungal biomass averaged 69.2% and 69.7% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 48% and 50.1% lower than the control plots in the plantation and the secondary forest, respectively. Soil CO2 efflux was positively correlated with both fungal and bacterial biomass in both the plantation the secondary forest. The correlation between soil CO2 efflux and active fungal biomass was significantly higher in the plantation than in the secondary forest. However, the correlation between the soil CO2 efflux and both the active and total bacterial biomass was significantly higher in the secondary forest than in the plantation in the day season. In addition, we found soil CO2 efflux was highly related to the strong interactions among root, fungal and bacterial biomass by multiple regression analysis (R2 > 0.61, P < 0.05). Our results suggest that carbon input from aboveground litterfall and roots (root litter and exudates) is critical to the soil microbial community and ecosystem carbon cycling in the wet tropical forests.  相似文献   

4.
秦岭地区不同林分土壤微生物群落代谢特征   总被引:6,自引:1,他引:5  
曹永昌  谭向平  和文祥  耿增超  刘帅  佘雕  侯林 《生态学报》2016,36(10):2978-2986
利用BIOLOG微孔板法研究了秦岭山脉的锐齿栎(Quercus aliena var.acutidentata)、油松(Pinus tabuliformis)、华山松(Pinus armandii)、松栎混交、云杉(Picea asperata)6个林地5种典型林分土壤微生物群落代谢特征。发现:(1)5种典型林分中,华山松的平均颜色变化率(AWCD)最高,然后是锐齿栎1云杉油松锐齿栎2松栎混交。位于不同林场的锐齿栎林地土壤AWCD值差异较大;(2)土壤微生物功能多样性指数与平均颜色变化率表现一致,6种林分之间差异显著,且不同的林分土壤微生物对6种碳源利用差异较大。(3)主成分分析显示各土壤微生物功能多样性具有显著差异,其综合因子得分为华山松锐齿栎1油松云杉锐齿栎2松栎混交。(4)冗余分析表明土壤p H、有机质、全氮、碱解氮、速效磷和速效钾的综合作用对土壤微生物群落功能多样性有显著影响,其中速效磷和p H与土壤微生物功能多样性最密切。  相似文献   

5.
Recent studies have suggested that the residence time of Pb in the forest floor may not be as long as previously thought, and there is concern that the large pulse of atmospheric Pb deposited in the 1960s and early 1970s may move rapidly through mineral soils and eventually contaminate groundwater. In order to assess Pb mobility at a woodland (JMOEC) in south-central Ontario, a stable Pb isotope tracer 207Pb (8 mg m–2) was added to the forest floor in white pine (Pinus strobus) and sugar maple (Acer saccharum) stands, respectively, and monitored over a 2-year period. Excess 207Pb was rapidly lost from the forest floor. Applying first-order rate coefficients (k) of 0.57 (maple) and 0.32 (pine) obtained from the tracer study, and estimates of Pb deposition in the region, current predicted Pb concentrations in the forest floor are 1.5–3.1 and 2.1–5.8 mg kg–1 in the maple and pine plots, respectively. These values compare favorably with measured concentrations (corrected for mineral soil contamination) of 3.1–4.3 mg kg–1 in the maple stand and 2.6–3.6 mg kg–1 in the pine stand. The response time (1/k) of Pb in the forest floor at the sugar maple and white pine plots was estimated to be 1.8 and 3.1 years, respectively. The rapid loss of Pb from the forest floor at the JMOEC is much greater than previously reported, and is probably due to the rapid rate of litter turnover that is characteristic of forests with mull-type forest floors. In a survey of 23 forested sites that border the Precambrian Shield in south-central Ontario, Pb concentrations in the forest floor increased exponentially with decreasing soil pH. Lead concentrations in the forest floor at the most acidic survey sites, which exhibited mor-type forest floors, were approximately 10 times higher (80 mg kg–1) than at the JMOEC, and pollution Pb burdens were up to 25 times greater. Despite the rapid loss of Pb from the forest floor at the JMOEC, the highest pollution Pb concentrations were found in the upper (0–1 cm) mineral soil horizon. Lead concentrations in the upper 30 cm of mineral soil were strongly correlated with organic matter content, indicating that pollution Pb does not move as a pulse down the soil profile, but instead is linked with organic matter distribution, indicating groundwater contamination is unlikely.  相似文献   

6.
A laboratory microcosm experiment was established to study whether the role of Cognettia sphagnetorum (Enchytraeidae) in affecting Scots pine (Pinus sylvestris) seedling growth is influenced by wood ash-amendment, i.e., neutralisation of the raw humus soil. Coniferous forest soil, inoculated with soil microbes and nematodes, was either treated with wood ash or left as ash-free control. Wood ash (corresponding to an amount of 5000 kg ha–1) was either spread on the soil surface or mixed into the soil. Enchytraeid and pine seedling biomass, abundance of nematodes, and water leachable NH4 +-N and NO3 -N were measured 26 and 51 weeks after initiation of the experiment and root length and N concentration of needles were measured 51 weeks after initiation of the experiment. Wood ash when mixed into the soil, reduced the biomass of C. sphagnetorum. Nematodes were unaffected by the treatments. In the ash-free soils C. sphagnetorum had little influence on pine growth, but it did decrease root length and root to shoot ratio. In the absence of enchytraeids wood ash decreased pine biomass production and root length. However, the presence of enchytraeids in the ash-treated soil compensated the ash-induced negative effects on the pine performance. Enchytraeids increased and wood ash decreased water leachable NH4 +-N in the presence but not in the absence of enchytraeids, while water leachable NO3 -N was not affected by the treatments. It was concluded that C. sphagnetorum can be important in ensuring nutrient cycling and plant growth in situations when an ecosystem encounters disturbances.  相似文献   

7.
Biochar and manure can be used for sustainable land management. However, little is known about how soil amendments might affect surface and belowground microbial processes and subsequent wood decomposition. In a split-split-split plot design, we amended soil with two rates of manure (whole plot; 0 and 9 Mg ha−1) and biochar (split plot; 0 and 10 Mg ha−1). Wood stakes of three species (hybrid poplar, triploid Populus tomentosa Carr.; aspen, Populus tremuloides Michx.; and pine, Pinus taeda L.) were placed in two positions (horizontally on the soil surface, and inserted vertically in the mineral soil), which served as a substrate for fungal growth. In 3 years, the decomposition rate (density loss), moisture content, and fungal community (via high-throughput sequencing methods) of stakes were evaluated. Results indicated that biochar and/or manure increased the wood stake decomposition rates, moisture content, and operational taxonomic unit abundance. However, the richness and diversity of fungi were dependent on wood stake position (surface > mineral), species (pine > the two Populus), and sample dates. This study highlights that soil amendment with biochar and/or manure can alter the fungal community, which in turn can enhance an important soil process (i.e., decomposition).  相似文献   

8.
Nitrogen transformations were studied in the forest floor and mineral soil (0–5 cm) of a Douglas fir forest (Pseudotsuga menziesii (Mirb.) Franco.) and a Scots pine forest (Pinus sylvestris L.) in the Netherlands. Curren nitrogen depositions (40 and 56 kg N ha-1 yr-1, respectively) were reduced to natural background levels (1–2 kg N ha-1 yr-1) by a roof construction. The study concentrated on rates and dynamic properties of nitrogen transformations and their link with the leaching pattern and nitrogen uptake of the vegetation under high and reduced nitrogen deposition levels. Results of an in situ field incubation experiment and laboratory incubations were compared. No effect of the reduced N deposition on nitrogen transformations was found in the Douglas fir forest. In the Scots pine forest, however, during some periods of the year nitrogen transformations were significantly decreased under the low nitrogen deposition level. At low nitrogen inputs a net immobilization occurred during most of the year leading to a very small net mineralization for the whole year. In laboratory and in individual field plots nitrogen transformations were negatively correlated with initial inorganic nitrogen concentrations. Nitrogen budget estimates showed that nitrogen transformations were probably underestimated by the in situ incubation technique. Nevertheless less nitrogen was available for plant uptake and leaching at the low deposition plots.  相似文献   

9.
In a previous study, ammonia-oxidizing bacteria (AOB)-like sequences were detected in the fragmentation layer of acid Scots pine (Pinus sylvestris L.) forest soils (pH 2.9–3.4) with high nitrification rates (>11.0 μg g−1 dry soil week−1), but were not detected in soils with low nitrification rates (<0.5 μg g−1 dry soil week−1). In the present study, we investigated whether this low nitrification rate has a biotic cause (complete absence of AOB) or an abiotic cause (unfavorable environmental conditions). Therefore, two soils strongly differing in net nitrification were compared: one soil with a low nitrification rate (location Schoorl) and another soil with a high nitrification rate (location Wekerom) were subjected to liming and/or ammonium amendment treatments. Nitrification was assessed by analysis of dynamics in NH4 +-N and NO3 -N concentrations, whereas the presence and composition of AOB communities were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis and sequencing of the ammonia monooxygenase (amoA) gene. Liming, rather than ammonium amendment, stimulated the growth of AOB and their nitrifying activity in Schoorl soil. The retrieved amoA sequences from limed (without and with N amendment) Schoorl and Wekerom soils exclusively belong to Nitrosospira cluster 2. Our study suggests that low nitrification rates in acidic Scots pine forest soils are due to pH-related factors. Nitrosospira cluster 2 detected in these soils is presumably a urease-positive cluster type of AOB.  相似文献   

10.
The influence of pollution stress (SO2, Cu2+, Pb2+, Zn2+ and fluoride) on composition changes in cellular membranes of roots of three European of Scots pine (Pinus sylvestris L.) populations were examined. Plant material growing in three experimental areas: Kórnik relatively free of air pollution (control), Luboń: SO2 and HF and Głogów: SO2 and heavy metals. Analysis of total phospholipids and their composition indicates that the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were present in lower concentration in the root tissues from both polluted sites (Luboń and Głogów). The difference in PC:PE ratio between control and both polluted sites was greater in root of Scots pine population from Russia than in the population from Slovakia. Under pollution conditions the content of lipid soluble antioxidant α-tocopherol was lower about 220 %, in comparison to the control. The action of pollution stress also lead to lowering of unsaturated:saturated ratio of total fatty acid, and lower content of polyunsaturated fatty acids, linoleic acid (18:2) and eicosatrienoic acid (20:3). We concluded that the long-term pollution stress markedly inhibited lipid biosynthesis in root tissue of Scots pine and it is probably contribute to the reduction of productivity of forests. These results also suggest that lipid composition can be used as an indicator of changes in tissue roots of Scots pine caused by air and/or soil long-term pollution.  相似文献   

11.
Soil core and root ingrowth core methods for assessing fine-root (< 2 mm) biomass and production were compared in a 38-year-old Scots pine (Pinus sylvestris L) stand in eastern Finland. 140 soil cores and 114 ingrowth cores were taken from two mineral soil layers (0–10 cm and 10–30 cm) during 1985–1988. Seasonal changes in root biomass (including both Scots pine and understorey roots) and necromass were used for calculating fine-root production. The Scots pine fine-root biomass averaged annually 143 g/m2 and 217 g/m2 in the upper mineral soil layer, and 118 g/m2 and 66 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The fine-root necromass averaged annually 601 g/m2 and 311 g/m2 in the upper mineral soil layer, and 196 g/m2 and 159 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The annual fine-root production in a Scots pine stand in the 30 cm thick mineral soil layer, varied between 370–1630 g/m2 in soil cores and between 210 – 490 g/m2 in ingrowth cores during three years. The annual production calculated for Scots pine fine roots, varied between 330–950 g/m2 in soil cores and between 110 – 610 g/m2 in ingrowth cores. The horizontal and vertical variation in fine-root biomass was smaller in soil cores than in ingrowth cores. Roots in soil cores were in the natural dynamic state, while the roots in the ingrowth cores were still expanding both horizontally and vertically. The annual production of fine-root biomass in the Scots pine stand was less in root ingrowth cores than in soil cores. During the third year, the fine-root biomass production of Scots pine, when calculated by the ingrowth core method, was similar to that calculated by the soil core method. Both techniques have sources of error. In this research the sampling interval in the soil core method was 6–8 weeks, and thus root growth and death between sampling dates could not be accurately estimated. In the ingrowth core method, fine roots were still growing into the mesh bags. In Finnish conditions, after more than three growing seasons, roots in the ingrowth cores can be compared with those in the surrounding soil. The soil core method can be used for studying both the annual and seasonal biomass variations. For estimation of production, sampling should be done at short intervals. The ingrowth core method is more suitable for estimating the potential of annual fine-root production between different site types.  相似文献   

12.
陈晶亮  杨慧  刘超  王博  黄磊 《生态学报》2023,43(19):7987-7997
森林凋落物层和土壤层是森林生态水文效应中的主要贡献层,对森林生态系统水土保持功能和水源涵养能力有重要影响。对比宁夏罗山自然保护区3种典型林分类型凋落物和土壤层水文效应的变化规律和水源涵养能力大小,为该地区的森林生态水文、水土保持和森林管理提供科学依据。以该自然保护区青海云杉纯林、油松纯林和青海云杉油松混交林为研究对象,运用称量、室内浸泡、环刀法和回归分析法对凋落物和土壤层的水文效应进行测定和拟合,并使用熵权法对二者的水源涵养能力进行评估。结果表明:(1)青海云杉油松混交林凋落物的总厚度和总储量显著高于青海云杉纯林和油松纯林(P<0.05),3种林分类型的半分解层的厚度和储量高于未分解层。(2)凋落物层最大持水量范围为63.29-95.08t/hm2,最大持水率范围为335.97%-353.85%,有效拦蓄量范围为34.09-63.92t/hm2,三者均为青海云杉油松混交林>云杉纯林>油松纯林。(3)3种林分类型的凋落物持水量(Q)与浸泡时间(t)呈对数函数关系,吸水速率(V)与浸泡时间(t)呈幂函数关系。(4)从3种林分类型的土壤物理性质和持水特性得出,3种林分类型的土壤层水文效应的等级排序为云杉油松混交林>油松纯林>青海云杉纯林。(5)凋落物层和土壤层的水源涵养能力大小为青海云杉油松混交林(0.43)>油松林(0.3)>青海云杉林(0.27)。综合来看,青海云杉油松混交林的凋落物层和土壤层的水源涵养能力最优,其次是纯林,说明混交林在水土保持和水源涵养方面比纯林更具优势。  相似文献   

13.
土壤呼吸是森林生态系统碳循环的关键过程,土壤动物可通过自身代谢及影响微生物活动调控土壤呼吸,因此研究土壤动物与土壤呼吸的相互关系对进一步揭示生态系统碳循环的规律和机理具有重要意义。通过野外定点,以帽儿山3种森林生态系统的土壤呼吸及土壤动物为研究对象,探讨不同森林生态系统的土壤呼吸、土壤动物个体密度和生物量的时间变化规律及二者相互关系。结果表明:(1)3种森林生态系统土壤总呼吸速率与土壤异养呼吸速率均呈现先增强后减弱的时间动态变化(P<0.05),且不同森林生态系统土壤异养呼吸速率差异显著(P<0.05),表现为硬阔叶林最高,红松人工林最低;(2)3种森林生态系统土壤动物生物量也具有显著的时间动态变化(P<0.05),均在9月份达到最大,且不同森林生态系统土壤动物个体密度显著不同(P<0.05),蒙古栎林土壤动物个体密度显著小于红松人工林与硬阔叶林;(3)通过回归分析可得,土壤动物数量及生物量的增加抑制了土壤呼吸速率,尤其在生长季初期、末期。研究表明土壤动物可通过抑制微生物生命活动和降低根系呼吸从而对土壤总呼吸及异养呼吸产生负反馈作用,三者是不可分割的整体,与土壤温度、水分等环境因子共同调控着土壤呼吸。  相似文献   

14.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

15.
森林土壤融化期异养呼吸和微生物碳变化特征   总被引:1,自引:0,他引:1  
采用室内土柱培养的方法,研究在不同湿度(55%和80%WFPS,土壤充水孔隙度)和不同氮素供给(NH_4Cl和KNO_3,4.5 g N/m~2)条件下,外源碳添加(葡萄糖,6.4 g C/m~2)对温带成熟阔叶红松混交林和次生白桦林土壤融化过程微生物呼吸和微生物碳的激发效应。结果表明:在整个融化培养期间,次生白桦林土壤对照CO_2累积排放量显著高于阔叶红松混交林土壤。随着土壤湿度的增加,次生白桦林土壤对照CO_2累积排放量和微生物代谢熵(q_(CO_2))显著降低,而阔叶红松混交林土壤两者显著地增加(P0.05)。两种林分土壤由葡萄糖(Glu)引起的CO_2累积排放量(9.61—13.49 g C/m~2)显著大于实验施加的葡萄糖含碳量(6.4g C/m~2),同时由Glu引起的土壤微生物碳增量为3.65—27.18 g C/m~2,而施加Glu对土壤DOC含量影响较小。因此,这种由施加Glu引起的额外碳释放可能来源于土壤固有有机碳分解。融化培养结束时,阔叶红松混交林土壤未施氮处理由Glu引起的CO_2累积排放量在两种湿度条件下均显著大于次生白桦林土壤(P0.001);随着湿度的增加,两种林分土壤Glu引起的CO_2累积排放量显著增大(P0.001)。单施KNO_3显著地增加两种湿度的次生白桦林土壤Glu引起的CO_2累积排放量(P0.01)。单施KNO_3显著地增加了两种湿度次生白桦林土壤Glu引起的微生物碳(P0.001),单施NH_4Cl显著地增加低湿度阔叶红松混交林土壤Glu引起的微生物碳(P0.001)。结合前期报道的未冻结实验结果,发现冻结过程显著地影响外源Glu对温带森林土壤微生物呼吸和微生物碳的刺激效应(P0.05),并且无论冻结与否,温带森林土壤微生物呼吸和微生物碳对外源Glu的响应均与植被类型、土壤湿度、外源氮供给及其形态存在显著的相关性。  相似文献   

16.
以陕西延安黄土丘陵区5种不同植被类型(人工刺槐林、天然侧柏林、天然辽东栎林、灌丛和裸地)为研究对象,分析了土壤微生物生物量碳、氮含量、细菌和真菌的丰度变化规律及其与土壤基本化学性质的关系。结果表明:(1)4种植被类型的土壤质量较之裸地都有不同程度的改善,总体趋势:天然林地人工林地裸地;(2)土壤微生物生物量碳、氮的总体趋势:天然林地最高,人工林次之,裸地最低,且与土壤有机碳(SOC)、全氮(TN)和速效磷(AP)极显著正相关(P0.01);(3)裸地土壤的细菌丰度最低,人工刺槐林真菌含量显著低于天然辽东栎林。细菌丰度与土壤营养状况呈显著正相关(P0.05),而真菌与土壤营养无明显相关性,只与土壤pH负相关。说明在该研究区域,植被类型与土壤质量对微生物资源都具有不同程度的作用。  相似文献   

17.
王全成  郑勇  宋鸽  金圣圣  贺纪正 《生态学报》2021,41(15):6245-6256
氮(N)沉降深刻影响着森林生态系统的生物多样性、生产力和稳定性。亚热带地区森林土壤磷(P)的有效性较低,N沉降将更突显P的限制作用。N、P输入对亚热带次级森林土壤的影响是否依赖于森林演替阶段知之甚少。选取两种不同演替年龄阶段(年轻林:<40 a;老年林:>85 a)的亚热带常绿阔叶林,设置模拟N和/或P沉降(10 g m-2 a-1)4个处理(Ctrl、N、P、NP),连续处理4.5年后采集表层、次表层和下底层(0-15、15-30、30-60 cm)土壤样品,综合分析了土壤微生物生物量碳(MBC)氮(MBN)和多种土壤养分含量。结果表明,MBC、MBN及土壤养分含量均随土壤深度增加而降低。N添加对两种演替阶段森林土壤中MBC和MBN均无显著影响。施P相关处理(P和NP)对年轻林表层土壤MBC和MBN无显著影响,但显著增加了老年林表层土壤MBC和MBN(P<0.05),表明老年林可能比年轻林更易受P限制。N添加显著增加了两种演替森林表层土壤可溶性有机氮(DON)、氨态氮(NH4+-N)和硝态氮(NO3--N)的含量(P<0.05);P相关处理(P和NP)显著增加两种演替阶段表层和次表层土壤速效磷(AP)以及表层土壤全磷(TP)的含量(P<0.05)。土壤MBC和MBN与土壤中各养分指标(可溶性有机碳DOC、DON、NH4+-N、NO3--N、AP、全碳TC、全氮TN和TP)呈显著正相关关系,土壤TC、TN和DOC是影响土壤微生物生物量的主要因子。研究可为评估和揭示未来全球环境变化背景下不同演替林龄亚热带森林的土肥潜力及土壤质量的演变提供一定的科学理论依据。  相似文献   

18.
J. Baar 《Mycorrhiza》1997,7(2):89-94
 The effect on ectomycorrhizal root growth in a nitrogen-enriched planted stand of Scots pine (Pinus sylvestris L.) on podzolic sandy soil to manipulation of litter and humus layers (removal, doubling and control treatments) was examined, and compared to ectomycorrhizal root growth in an untreated naturally established Scots pine stand on nutrient-poor non-podzolic sandy soil. Half a year after manipulation of litter and humus layers in the planted stand, ingrowth-cores to a depth of 60 cm were installed in both stands. Scots pine roots were sampled four times during two growing seasons. Ectomycorrhizal roots were found at all sampled soil depths to 60 cm in all plots. Root growth and ectomycorrhizal development were greater in the naturally established stand than in all plots in the planted stand. Numbers of ectomycorrhizal root tips in the litter and humus removal plots were generally higher than in the control plots in the planted stand until May 1992. Doubling litter and humus did not significantly affect root length or the numbers of ectomycorrhizal root tips. The N dissolved , NH4 + and NO3 concentrations and the organic matter content in the upper 5 cm of the mineral soil in the planted stand on podzolic sandy soil were generally higher and the pH significantly lower than in the naturally established stand on non-podzolic sandy soil. Root growth and ectomycorrhizal development in the secondary stand may have been negatively affected by the chemical composition of the podzolic sandy soil. Accepted: 19 March 1997  相似文献   

19.
Archaeal 16S rRNA gene sequences have been found in a variety of moderate-temperature habitats including soil and rhizospheres. In this study, the differences of archaeal communities associated with Scots pine (Pinus sylvestris L.) short roots, different types of mycorrhizospheric compartments, and uncolonized boreal forest humus were tested by direct DNA extraction, polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE), and sequencing. The results indicated that mycorrhizal colonization of Scots pine roots substantially influence the archaeal community of pine rhizospheres. Colonization of short roots by most mycorrhizal fungi tested increased both archaeal frequency and diversity. Most of the archaeal sequences encountered in mycorrhizas belonged to the phylum Euryarchaeota, order of Halobacteriales. The difference in archaeal diversity between the mycorrhizospheric compartments and humus was profound. Most compartments with fungal components contained euryarchaeotal 16S rRNA gene sequences, whereas a high diversity of crenarchaeotal sequences and no euryarchaeotal sequences were found in forest humus outside mycorrhizospheres.  相似文献   

20.
Evaluation of enzyme activities in combination with taxonomic analyses may help define the mechanisms involved in microbial decomposition of orgaic amendments and biological control of soilborne pathogens. In this study, powdered pine bark was added to nematode-infested soil at rates of 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 g kg–1. Total fungal populations did not differ among treatments immediately after application of pine bark. After 7 days, fungal populations were positively correlated with increasing levels of pine bark. This increase was sustained through 14 and 21 days.Penicillium chrysogenum andPaecilomves variotii were the predominant fungal species isolated from soil amended with pine bark. Total bacterial populations did not change with addition of pine bark at 0, 7, and 14 days after treatment. At 21 and 63 days, total bacterial populations declined in soil receiving the highest rates of pine bark. Addition of pine bark powder to soil caused a shift in predominant bacterial genera fromBacillus spp. in nonamended soil, toPseudomonas spp. in amended soil. Soil enzyme activities were positively correlated with pine bark rate at all sampling times. Trehalase activity was positively correlated with total fungal populations and with predominant fungal species, but was not related to bacterial populations. The number of non-parasitic (non-stylet bearing) nematodes andMeloidogyne arenaria in soil and roots were not correlated with pine bark rate. However,Heterodera glycines juveniles in roots, and the number of cysts g–1 root, declined with increasing levels of pine bark.Journal Series Series No. 18-933598 Alabama Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号