首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
目的 探讨IFN-γ和IL-6对多发性骨髓瘤(multiple myeloma,MM)B淋巴细胞刺激因子(BLyS)表达变化的影响及相关机制.方法 采用流式细胞术、实时荧光定量PCR、E1.ISA及Western blot方法 分析人MM肿瘤细胞KM3在IFN-γ和IL-6以及相关信号通路特异性抑制剂作用前后BLJys表达水平的变化.结果 lFN-γ和IL-6促进KM3细胞BLyS的表达水平;NF-KB抑制剂能够抑制BLyS的表达水平;NF-KB抑制剂BAY11-7082能够完全下调IFN-γ引起的BLyS表达的上调作用;抑制促分裂原活化蛋白激酶(MAPK)的活性能够下调BLyS的表达水平.结论 MAPK与NF-KB信号通路参与了Blys的表达调节.  相似文献   

4.
5.
Periventricular leukomalacia (PVL) is the main cause of neurologic handicap in pre-term infants. The understanding of cellular and molecular mechanisms leading to white matter damage is critical for development of innovative therapeutic strategies for PVL.The pathogenesis of PVL remains unclear but possibly involves glutamate excitotoxicity as an important molecular pathway. We previously described a neonatal mouse model of excitotoxic white matter lesion mimicking human PVL. In the present study, we used this experimental tool to investigate the cellular populations and the glutamate receptor subtypes involved in excitotoxic white matter lesions. Combined immunohistochemical, electron microscopic, and cell death detection data revealed that microglial activation and astrocytic death were the primary responses of white matter to excitotoxic insult. In vitro experiments suggested that microglia activated by ibotenate released soluble factors that kill astrocytes. The use of selective agonists and antagonists of glutamate receptors revealed that N-methyl-D-aspartate (NMDA) receptor activation was essential and sufficient to produce cystic white matter lesions. NMDA receptor immunohistochemistry labeled microglial cells in the neonatal periventricular white matter. The developing white matter displayed a window of sensitivity to excitotoxic damage that was paralleled by the transient presence of NMDA receptor-expressing white matter cells. Assuming that similar pathophysiologic mechanisms are present in human pre- term infants, microglia and NMDA receptors could represent key targets for treatment of PVL.  相似文献   

6.
Prostate cancer preferentially metastasizes to the bone. However, the underlying molecular mechanisms are still unclear. To explore the effects of a bone-mimicking microenvironment on PC3 prostate cancer cell growth and metastasis, we used osteoblast differentiation medium (ODM; minimal essential medium alpha supplemented with L-ascorbic acid) to mimic the bone microenvironment. PC3 cells grown in ODM underwent epithelial-mesenchymal transition and showed enhanced colony formation, migration, and invasion abilities compared to the cells grown in normal medium. PC3 cells grown in ODM showed enhanced metastasis when injected in mice. A screening of signaling pathways related to invasion and metastasis revealed that the NF-kB pathway was activated, which could be reversed by Bay 11-7082, a NF-kB pathway inhibitor. These results indicate that the cells in different culture conditions manifested significantly different biological behaviors and the NF-kB pathway is a potential therapeutic target for prostate cancer bone metastasis.  相似文献   

7.
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.  相似文献   

8.
PROBLEM: Pregnancy can be considered as a model of successfully controlled tissue invasion. Cellular mediated immunity appears to regulate the controlled invasion of fetal trophoblast cells. In endometrium cancer, a dysregulation of invasive malignant cells can be observed. Since immunocompetent cells are known to be involved in recognition and rejection of 'non-self' antigens, we investigated the presence and distribution pattern of CD3, CD8, CD56, and CD68 positive cells in decidua from normal and failing pregnancies, compared with malignant and benign endometrium. METHOD OF STUDY: Decidual tissue from first trimester normal pregnancies (NP; n = 15) and abortion (AB; n = 12), endometrial samples from premenopausal women (NE; n = 8), and endometrioid adenocarcinoma (EA; n = 8) were examined by immunohistochemistry using monoclonal antibody against large spectrum cytokeratin, and against the receptors CD3, CD8, CD56 and CD68, respectively. RESULTS: In NP, we observed 32.5% CD3, 44.7% CD56, and 22.9% CD68+ cells. In AB, we found 36.9% CD3, 45.3% CD56, and 17.8% CD68+ cells. The differences in ratio between normal pregnancy and abortion were not statistically significant. In NE, we counted 39.5% CD3, 30.2% CD56 and 30.2% CD68 cells. In EA, we observed 47.9% CD3, 12.4% CD56 and 39.7% CD68+ cells. The decrease of CD56 positive cells in endometrioid adenocarcinoma was statistically significant. Interestingly, we found 4.1% of cells positive for CD8 in NP, 4.9% in AB, 22.7% in NE, and 48.2% in EA. CONCLUSIONS: The increase of CD8 cells in NE, and particularly in EA, and decrease of CD56 cells, compared with NP or AB, suggests an interaction between CD8 cells and CD56 cells. Studying different pathological situations in the uterus, such as malignancies or ectopic pregnancies, might help us to understand the mechanisms involved in the maintenance of pregnancy.  相似文献   

9.
10.
It has been shown recently that in mitral cells of the rat olfactory bulb, N-methyl-D-aspartate (NMDA) autoreceptors are activated during mitral cell firing. Here we consider in more details the mechanisms of mitral cell self-excitation and its physiological relevance. We show that both ionotropic NMDA and non-NMDA autoreceptors are activated by glutamate released from primary and secondary dendrites. In contrast to non-NMDA autoreceptors, NMDA autoreceptors are almost exclusively located on secondary dendrites and their activation generates a large and sustained self-excitation. Both intracellularly evoked and miniature NMDA-R mediated synaptic potentials are blocked by intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) and result from a calcium-dependent release of glutamate. Self-excitation can be produced by a single spike, and trains of spikes result in frequency facilitation. Thus activation of excitatory autoreceptors is a major function of action potentials backpropagating in mitral cell dendrites, which results in an immediate positive feedback counteracting recurrent inhibition and increasing the signal-to-noise ratio of olfactory inputs.  相似文献   

11.
12.
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.  相似文献   

13.
Caries induced cytokine network in the odontoblast layer of human teeth   总被引:1,自引:0,他引:1  

Background

Pattern recognition receptors (PRRs) for double-stranded RNA (dsRNA) are components of innate immunity that recognize the presence of viral infection and initiate efficient defense mechanisms. In addition to previously well-characterized signaling pathways that are mediated by PKR and TLR3, new intracellular dsRNA sensors, that are members of CARD and DExD/H box helicase family, have been identified. However, the molecular mechanisms involved in the signaling pathways mediated by these new dsRNA sensors have not been extensively characterized.

Results

Here, we studied an intracellular dsRNA pathway in the human fibrosarcoma cell line HT1080, which is distinct from the TLR3-mediated extracellular dsRNA pathway. Particularly, the NF-kB subunits RELA and RELB were differentially utilized by these two dsRNA signaling pathways. In TLR3-mediated dsRNA signaling, siRNA knock-down studies suggested a limited role for RELA on regulation of interferon beta and other cytokines whereas RELB appeared to have a negative regulatory role. By contrast, intracellular dsRNA signaling was dependent on RELA, but not RELB.

Conclusions

Our study suggests that extracellular and intracellular dsRNA signaling pathways may utilize different NF-kB members, and particularly the differential utilization of RELB may be a key mechanism for powerful inductions of NF-kB regulated genes in the intracellular dsRNA signaling pathway.  相似文献   

14.
15.
Anhidrotic ectodermal dysplasia (EDA) is a disorder of ectodermal differentiation characterized by sparse hair, abnormal or missing teeth, and inability to sweat. X-linked EDA is the most common form, caused by mutations in the EDA gene, which encodes ectodysplasin, a member of the tumor necrosis factor (TNF) family. Autosomal dominant and recessive forms of EDA have been also described and are accounted for by two genes. Mutations in EDAR, encoding a TNF receptor (EDAR) cause both dominant and recessive forms. In addition, mutations in a recently identified gene, EDARADD, encoding EDAR-associated death domain (EDARADD) have been shown to cause autosomal recessive EDA. Here, we report a large Moroccan family with an autosomal dominant EDA. We mapped the disease gene to chromosome 1q42.2-q43, and identified a novel missense mutation in the EDARADD gene (c.335T>G, p.Leu112Arg). Thus, the EDARADD gene accounts for both recessive and dominant EDA. EDAR is activated by its ligand, ectodysplasin, and uses EDARADD to build an intracellular complex and activate nuclear factor kappa B (NF-kB). We compared the functional consequences of the dominant (p.Leu112Arg) and recessive mutation (p.Glu142Lys), which both occurred in the death domain (DD) of EDARADD. We demonstrated that the p.Leu112Arg mutation completely abrogated NF-kB activation, whereas the p.Glu142Lys retained the ability to significantly activate the NF-kB pathway. The p.Leu112Arg mutation is probably a dominant negative form as its cotransfection impaired the wild-type EDARADD's ability to activate NF-kB. Our results confirm that NF-kB activation is impaired in EDA and support the role of EDARADD DD as a downstream effector of EDAR signaling.  相似文献   

16.
Activation of glutamate receptors and glial cells in the spinal dorsal horn are two fundamental processes involved in the pathogenesis of various pain conditions, including neuropathic pain induced by injury to the peripheral or central nervous systems. Numerous studies have demonstrated that minocycline treatment attenuates allodynic and hyperalgesic behaviors induced by tissue inflammation or nerve injury. However, the synaptic mechanisms by which minocycline prevents hyperalgesia are not fully understood. We recently reported that deficient glutamate uptake by glial glutamate transporters (GTs) is key for the enhanced activation of N-methyl-d-aspartate (NMDA) receptors in the spinal sensory synapses of rats receiving partial sciatic nerve ligation (pSNL). In this study, we investigated how minocycline affects activation of NMDA receptors in the spinal sensory synapses in rats with pSNL by whole cell recordings of NMDA currents in spinal laminea I and II neurons from spinal slices. The effects of minocycline treatments on the dorsal horn expression of glial GTs and astrocyte marker glial fibrillary acidic protein (GFAP) were analyzed by immunohistochemistry. We demonstrated that normalized activation of NMDA receptors in synapses activated by both weak and strong peripheral input in the spinal dorsal horn is temporally associated with attenuated mechanical allodynia in rats with pSNL receiving intraperitoneal injection of minocycline. Minocycline ameliorated both the downregulation of glial GT expression and the activation of astrocytes induced by pSNL in the spinal dorsal horn. We further revealed that preventing deficient glial glutamate uptake at the synapse is crucial for preserving the normalized activation of NMDA receptors in the spinal sensory synapses in pSNL rats treated with minocycline. Our studies suggest that glial GTs may be a potential target for the development of analgesics.  相似文献   

17.
18.
The intervertebral disc is the largest avascular organ in the human body. However, with the progress of intervertebral disc degeneration (IDD), the disc tends to be vascularized increasingly via angiogenesis. It is well established that both human nucleus pulposus (NP) cells and vascular endothelial cells express FasL and Fas. However, the issue remains open as to whether there are certain active mechanisms preventing angiogenesis in the disc via the FasL-Fas machinery. Here, we established a co-culture system of human NP cells and vascular endothelial (HMEC-1) cells. We found that normal NP cells were more capable of inducing apoptosis in HMEC-1 cells (14.2±3.4%) than degenerate NP cells (6.7±1.9%), p<0.05. By up-regulating the FasL expression in degenerate NP cells, we found that FasL played an essential role in the mediation of HMEC-1 cell apoptosis with the activation of downstream FADD and caspase-3. Furthermore, we found an increased Fas expression in HMEC-1 cells following co-cultured with NP cells, which might be closely linked with FasL produced by NP cells and enhance their interaction. Collectively, this is the first study showing FasL-Fas network might plays an important role in the molecular mechanisms of angiogenesis avoidance of human disc. Consequently, our findings might shed light on the pathogenesis in human IDD and provide a novel target for the treatment strategies for IDD.  相似文献   

19.
20.
Innate and adaptive immunity are the major defence mechanisms of higher organisms against inherent and environmental threats. Innate immunity is present already in unicellular organisms but evolution has added novel adaptive immune mechanisms to the defence armament. Interestingly, during aging, adaptive immunity significantly declines, a phenomenon called immunosenescence, whereas innate immunity seems to be activated which induces a characteristic pro-inflammatory profile. This process is called inflamm-aging. The recognition and signaling mechanisms involved in innate immunity have been conserved during evolution. The master regulator of the innate immunity is the NF-kB system, an ancient signaling pathway found in both insects and vertebrates. The NF-kB system is in the nodal point linking together the pathogenic assault signals and cellular danger signals and then organizing the cellular resistance. Recent studies have revealed that SIRT1 (Sir2 homolog) and FoxO (DAF-16), the key regulators of aging in budding yeast and Caenorhabditis elegans models, regulate the efficiency of NF-kB signaling and the level of inflammatory responses. We will review the role of innate immunity signaling in the aging process and examine the function of NF-kB system in the organization of defence mechanisms and in addition, its interactions with the protein products of several gerontogenes. Our conclusion is that NF-kB signaling seems to be the culprit of inflamm-aging, since this signaling system integrates the intracellular regulation of immune responses in both aging and age-related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号