首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A CMOS low-power mixed-signal clock and data recovery circuit is presented in this paper. It is designed for OIF CEI-6G+ LR backplane transceiver, and consists of a phase detector, loop filter, phase control logic, and phase interpolator. A unique subsampled architecture makes it possible for a low-power mixed-signal clock recovery loop running at a rate of 6 Gb/s. The proposed architecture has data pattern independent loop bandwidth. Fabricated in a 0.13-/spl mu/m CMOS technology in an area of 280/spl times/100 /spl mu/m/sup 2/, the clock and data recovery loop exhibits a frequency tracking range up to 2000 ppm. The bit error rate is less than 10/sup -12/ with a pseudorandom bit sequence of length 2/sup 31/-1. The power dissipation is 24 mW for clock and data recovery circuits from a single 1.2-V supply.  相似文献   

2.
A 5-6.4 Gb/s transceiver, consisting of a parallel 12-channel transmitter (Tx), 12-channel receiver (Rx), clock generators based on LC-VCO phase-locked loops (PLLs), and a clock recovery unit, was developed. The Tx has a five-tap pre-emphasis filter, and the Rx has an equalizer with an intersymbol interference (ISI) monitor. Monitoring the ISI enables fine adjustment of loss compensation. The pre-emphasis filter in the Tx and the equalizer in the Rx compensate for transmission losses of up to 20 dB at 6.4 Gb/s, respectively. Both the Tx and Rx channels, including the PLLs, are 3.92 mm/sup 2/ in area. The transmitter dissipates 150 mW/channel at 6.4 Gb/s when compensating for a loss of 20 dB, and the receiver 90 mW/channel when compensating for the same loss.  相似文献   

3.
This work presents a quad-channel serial-link transceiver providing a maximum full duplex raw data rate of 12.5Gb/s for a single 10-Gbit eXtended Attachment Unit Interface (XAUI) in a standard 0.18-/spl mu/m CMOS technology. To achieve low bit-error rate (BER) and high-speed operation, a mixed-mode least-mean-square (LMS) adaptive equalizer and a low-jitter delay-immune clock data recovery (CDR) circuit are used. The transceiver achieves BER lower than <4.5/spl times/10/sup -15/ while its transmitted data and recovered clock have a low jitter of 46 and 64 ps in peak-to-peak, respectively. The chip consumes 178 mW per each channel at 3.125-Gb/s/ch full duplex (TX/RX simultaneous) data rate from 1.8-V power supply.  相似文献   

4.
This paper describes the design and the implementation of a fully integrated 10 Gb Ethernet transceiver in a 0.13-/spl mu/m CMOS process using only a 1.2 V supply. A coarse control algorithm that combines a voltage range monitoring circuit with a frequency lock detector provides a robust operation against process, voltage, and temperature (PVT) variations for a VCO with a ring oscillator. With the use of a blind oversampling DPLL architecture, four channels of XAUI transceivers can share a single PLL, eliminating the clock synchronization problem between channels. Also, the total number of clock domains for the entire chip is reduced to three, making the integration of the XAUI with the 10G transceiver much simpler. The test chip consumes 898 mW from a 1.2 V supply.  相似文献   

5.
This paper describes a 2.5-3.125-Gb/s quad transceiver with second-order analog delay-locked loop (DLL)-based clock and data recovery (CDR) circuits. A phase-locked loop (PLL) is shared between receive (RX) and transmit (TX) chains. On each RX channel, an amplifier with user-programmable input equalization precedes the CDR. Retimed data then goes to an 1:8/1:10 deserializer. On the TX side, parallel data is serialized into a high-speed bitstream with an 8:1/10:1 multiplexer. The serial data is introduced off-chip through a high-speed CML buffer having single-tap pre-emphasis. Proposed DLL-based CDR can tolerate large frequency offsets with no jitter tolerance degradation due to its second-order PLL-like nature. Also, this study introduces an improved charge-pump and an improved phase-interpolator. Fabricated in a 0.15-/spl mu/m CMOS process, the 1.9-mm/sup 2/ transceiver front-end operates from a single 1.2-V supply and consumes 65-mW/channel of which 32 mW is due to the CDR. CDR jitter generation and high-frequency jitter tolerance are 5.9 ps-rms and 0.5 UI, respectively, for 3.125 Gb/s, 2/sup 23/-1 PRBS input data with 800-ppm frequency offset.  相似文献   

6.
This paper presents a 10-Gb/s clock and data recovery (CDR) circuit for use in multichannel applications. The module aligns the phase of a plesiochronous system clock to the incoming data by use of phase interpolation. Thus, coupling between voltage-controlled oscillators (VCOs) in adjacent channels can be avoided. The controller for the phase interpolator is realized with analog circuitry to overcome the speed and phase resolution limitations of digital implementations. Fabricated in a 0.11-/spl mu/m CMOS technology the module has a size of 0.25/spl times/1.4 mm/sup 2/. The power consumption is 220 mW from a supply voltage of 1.5 V. The CDR exceeds the SDH/SONET jitter tolerance specifications with a pseudo random bit sequence of length 2/sup 23/-1 and a bit-error rate threshold of 10/sup -12/. The re-timed and demultiplexed data has an rms jitter of 3.2 ps at a data rate of 2.7 Gb/s.  相似文献   

7.
A fully integrated clock and data recovery circuit (CDR) using a multiplying shifted-averaging delay locked loop and a rate-detection circuit is presented. It can achieve wide range and low jitter operation. A duty-cycle-insensitive phase detector is also proposed to mitigate the dependency on clock duty cycle variations. The experimental prototype has been fabricated in a 0.25-/spl mu/m 1P5M CMOS technology and occupies an active area of 2.89 mm/sup 2/. The measured CDR could operate from 125 Mb/s to 2.0 Gb/s with a bit error rate better than 10/sup -12/ from a 2.5-V supply. Over the entire operating frequency range, the maximum rms jitter of the recovered clock is less than 4 ps.  相似文献   

8.
This paper demonstrates a low-jitter clock multiplier unit that generates a 10-GHz output clock from a 2.5-GHz reference clock. An integrated 10-GHz LC oscillator is locked to the input clock, using a simple and fast phase detector circuit that overcomes the speed limitation of a conventional tri-state phase frequency detector due to the lack of an internal feedback loop. A frequency detector guarantees PLL locking without degenerating jitter performance. The clock multiplier is implemented in a standard 0.18-/spl mu/m CMOS process and achieves a jitter generation of 0.22 ps while consuming 100 mW power from a 1.8-V supply.  相似文献   

9.
A quad-channel 0.6-3.2 Gb/s/channnel transceiver using eight independent phase-locked loops (PLLs) shows a 1-ps rms random jitter performance without interchannel interference. The PLL employs a folded starved inverter with high supply/substrate noise immunity and an analog coarse-tuning scheme for both seamless frequency acquisition and N-fold voltage-controlled-oscillator (VCO) gain reduction. A fixed-interval charge pumping is adopted for wide pumping-current range and large jitter tolerance. A wide-range delayed-locked loop (DLL) is utilized as a clock and reset generator for an elastic buffer. The transceiver, implemented in a 0.18-/spl mu/m CMOS technology, operates across a 30-in FR-4 backplane up to 3.2 Gb/s/ch with a bit-error rate of less than 10/sup -13/.  相似文献   

10.
A multiplying delay-locked loop (MDLL) for high-speed on-chip clock generation that overcomes the drawbacks of phase-locked loops (PLLs) such as jitter accumulation, high sensitivity to supply, and substrate noise is described. The MDLL design removes such drawbacks while maintaining the advantages of a PLL for multirate frequency multiplication. This design also uses a supply regulator and filter to further reduce on-chip jitter generation. The MDLL, implemented in 0.18-/spl mu/m CMOS technology, occupies a total active area of 0.05 mm/sup 2/ and has a speed range of 200 MHz to 2 GHz with selectable multiplication ratios of M=4, 5, 8, 10. The complete synthesizer, including the output clock buffers, dissipates 12 mW from a 1.8-V supply at 2.0 GHz. This MDLL architecture is used as a clock multiplier integrated on a single chip for a 72/spl times/72 STS-1 grooming switch and has a jitter of 1.73 ps (rms) and 13.1 ps (pk-pk).  相似文献   

11.
A 20-Gb/s transmitter is implemented in 0.13-/spl mu/m CMOS technology. An on-die 10-GHz LC oscillator phase-locked loop (PLL) creates two sinusoidal 10-GHz complementary clock phases as well as eight 2.5-GHz interleaved feedback divider clock phases. After a 2/sup 20/-1 pseudorandom bit sequence generator (PRBS) creates eight 2.5-Gb/s data streams, the eight 2.5-GHz interleaved clocks 4:1 multiplex the eight 2.5-Gb/s data streams to two 10-Gb/s data streams. 10-GHz analog sample-and-hold circuits retime the two 10-Gb/s data streams to be in phase with the 10-GHz complementary clocks. Two-tap equalization of the 10-Gb/s data streams compensate for bandwidth rolloff of the 10-Gb/s data outputs at the 10-GHz analog latches. A final 20-Gb/s 2:1 output multiplexer, clocked by the complementary 10-GHz clock phases, creates 20-Gb/s data from the two retimed 10-Gb/s data streams. The LC-VCO is integrated with the output multiplexer and analog latches, resonating the load and eliminating the need for clock buffers, reducing power supply induced jitter and static phase mismatch. Power, active die area, and jitter (rms/pk-pk) are 165 mW, 650 /spl mu/m/spl times/350 /spl mu/m, and 2.37 ps/15 ps, respectively.  相似文献   

12.
A 3.125-Gb/s clock and data recovery (CDR) circuit using a half-rate digital quadricorrelator frequency detector and a shifted-averaging voltage-controlled oscillator is presented for 10-Gbase-LX4 Ethernet. It can achieve low-jitter operation and improve pull-in range without a reference clock. This CDR circuit has been fabricated in a standard 0.18-/spl mu/m CMOS technology. It occupies an active area of 0.6 /spl times/ 0.8 mm/sup 2/ and consumes 83 mW from a single 1.8-V supply. The measured bit-error rate is less than 10/sup -12/ for 2/sup 7/ - 1 PRBS 3.125-Gb/s data. It can meet the jitter tolerance specifications for the 10-Gbase-LX4 Ethernet application.  相似文献   

13.
A compact (1 mm /spl times/ 160 /spl mu/m) and low-power (80-mW) 0.18-/spl mu/m CMOS 3.125-Gb/s clock and data recovery circuit is described. The circuit utilizes injection locking to filter out high-frequency reference clock jitter and multiplying delay-locked loop duty-cycle distortions. The injection-locked slave oscillator output can have its output clocks interpolated by current steering the injecting clocks. A second-order clock and data recovery is introduced to perform the interpolation and is capable of tracking frequency offsets while exhibiting low phase wander.  相似文献   

14.
Optical recording demands a meticulous write strategy to control the laser beam power and regulate the phase change layer temperature tightly. The width, height, and delay of a string of short pulses applied to the laser diode need to be adjusted in fine steps, and the writing speed varies widely per applications. A multi-phase phase-locked loop (PLL) tracks a wide range of clock frequencies, and provides a low-jitter time base for write pulses. With two enabling circuit concepts, PLL loop filter voltage folding/unfolding and switch-in of parallel MOS resistors in delay cells, it is possible to operate a PLL to cover a frequency range spanning over three octaves with one VCO. A 10-stage differential VCO is phase-locked to the input channel clock ranging from 26 to 420 MHz (1/spl times/-16/spl times/ DVD speed), and its 20-phase outputs are used to generate write pulses. The pulsewidth and delay are programmed with 120 /spl plusmn/ 40 ps time resolution. The prototype chip fabricated in 0.35 /spl mu/m CMOS occupies 3.5/spl times/3.3 mm/sup 2/, and consumes 294 mW at 3.3 V.  相似文献   

15.
Broad-band phase-locked loops (PLLs) are proposed for burst-mode clock and data recovery in optical multiaccess networks. Design parameters for a charge-pump PLL-based clock and data recovery (CDR) with fast phase acquisition are derived using a time-domain model that does not assume narrow loop bandwidth or small phase errors. Implementation in a half-rate CDR circuit confirms a clock phase acquisition time of 40 ns, or 100 bits at 2.488-Gb/s rate, and data recovery at 1.244-Gb/s rate with a bit-error rate of 1/spl times/10/sup -10/ (2/sup 14/-1 pseudorandom binary sequence with Manchester-encoding). The CDR was fabricated in complementary metal-oxide-semiconductor 0.18-/spl mu/m technology in an area of 1/spl times/1 mm/sup 2/ and consumes 54 mW of power from a 1.8-V supply.  相似文献   

16.
In this paper, a delay-locked loop (DLL)-based clock generator is presented. Although a DLL-based clock generator requires a clean reference signal, it has several inherent advantages over conventional phase-locked-loop-based clock generators, i.e., no jitter accumulation, fast locking, stable loop operation, and easy integration of the loop filter. We propose a phase detector with a reset circuitry and a new frequency multiplier to overcome the limited locking range and frequency multiplication problems of the conventional DLL-based system. Fabricated in a 0.35-/spl mu/m CMOS process, our DLL-based clock generator occupies 0.07 mm/sup 2/ of area and consumes 42.9 mW of power. It operates in the frequency range of 120 MHz-1.1 GHz and has a measured cycle-to-cycle jitter of /spl plusmn/7.28 ps at 1 GHz. The die area, peak-to-peak, and r.m.s. jitter are the smallest compared to those of reported high-frequency clock multipliers.  相似文献   

17.
A 1 GHz CMOS analog front-end for general partial response maximum likelihood (GPRML) read channel in hard disk drive application has been implemented in 0.35 /spl mu/m CMOS. A continuous time analog filter fulfills the relaxed equalization for GPRML detection and can save up to 35% power consumption for the whole read channel. An analog DFE-based timing recovery loop is implemented to avoid the extremely long latency in the digital signal processing path (Viterbi decoder). The measured performances is 1.1 dB off simulations at 800 MHz and 1.6 dB off at 1GHz. The chip draws 240 mW from a 3.3 V supply at 800MHz clock and 380 mW from a 3.6 V supply at 1 GHz clock.  相似文献   

18.
A 43-Gb/s receiver (Rx) and transmitter (Tx) chip set for SONET OC-768 transmission systems is reported. Both ICs are implemented in a 0.18-/spl mu/m SiGe BiCMOS technology featuring 120-GHz f/sub T/ and 100 GHz f/sub max/. The Rx includes a limiting amplifier, a half-rate clock and data recovery unit, a 1:4 demultiplexer, a frequency acquisition aid, and a frequency lock detector. Input sensitivity for a bit-error rate less than 10/sup -9/ is 40 mV and jitter generation better than 230 fs rms. The IC dissipates 2.4 W from a -3.6-V supply voltage. The Tx integrates a half-rate clock multiplier unit with a 4:1 multiplexer. Measured clock jitter generation is better than 170 fs rms. The IC consumes 2.3 W from a -3.6-V supply voltage.  相似文献   

19.
An all-digital phase-locked loop (PLL) circuit in which resolution in the phase detector and digitally controlled oscillator (DCO) exactly matches the gate-delay time is presented. The pulse delay circuit is connected in a ring shape with 32 inverters (2/sup 5/ inverters). With the inverter gate-delay time as the time base, the pulse phase difference is detected simultaneously with the generation of the output clock. In this system, the phase detector and oscillator share a single ring-delay-line (RDL). This means the resolution is the same at all times, making a high-speed response possible. In a prototype integrated circuit (IC) using 0.65-/spl mu/m CMOS, the generation of a frequency multiplication clock was achieved with four reference clocks, and that of a phase-locked clock with seven reference clocks, for a high-speed response. The cell size was 1.08 /spl times/ 1.08 mm/sup 2/, and the output clock frequency had a wide range of 50 kHz/spl sim/60 MHz. The multiplication range of the clock frequency was also a very wide 4/spl sim/1022, and a high level of precision was achieved with a clock jitter standard deviation of 234 ps. This digital PLL can withstand a broad range of operating environments, from -30/spl deg/C/spl sim/140/spl deg/C, and is suitable for making a programmable clock generator on a chip.  相似文献   

20.
A monolithic 10-Gb/s clock/data recovery and 1:2 demultiplexer are implemented in 0.18-/spl mu/m CMOS. The quadrature LC delay line oscillator has a tuning range of 125 MHz and a 60-MHz/V sensitivity to power supply pulling. The circuit meets SONET OC-192 jitter specifications with a measured jitter of 8 ps p-p when performing error-free recovery of PRBS 2/sup 31/-1 data. Clock and data recovery (CDR) is achieved at 10 Gb/s, demonstrating the feasibility of a half-rate early/late PD (with tri-state) based CDR on 0.18-/spl mu/m CMOS. The 1.9/spl times/1.5 mm/sup 2/ IC (not including output buffers) consumes 285 mW from a 1.8-V supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号