首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
智能网联车的无人驾驶分为感知、规划、执行三个部分,行为决策是无人驾驶发展的核心技术之一。在复杂的交通路口,车辆行驶路线难以预测,通过分析车辆在路口行为发生条件统计,设计出合理和安全的驾驶行为。文章以智能网联车为研究对象,使车辆行驶到十字路口的换道、转弯、调头等行为对应行驶场景,能够保证智能网联车安全、合理的在一定可控范围下行驶在复杂的十字路口。无人驾驶车辆在十字路口的通行中提高了行驶效率和减少了运营成本,带给人们更加便利和舒适的服务,推动智能网联车更全面的发展。  相似文献   

2.
为研究多车协同自动换道,分析了三车道八车场景中两车协同行为,对两车并行协同行为进行界定,提出了两车并行协同自动换道控制策略。针对三车道八车场景,以车车通信为条件,实时获取周围车辆的运动状态变化和换道意图,根据周围车辆的运动状态,设计了两车协同换道轨迹模型,规划换道车辆的参考协同换道轨迹。在此基础上,提出了并行协同自动换道安全距离模型,以形成换道车辆与周围车辆的换道轨迹约束,保证生成安全可靠的协同换道轨迹。最终根据规划的安全参考轨迹,采用模型预测控制算法,实时优化换道车辆的速度和前轮转角,实现轨迹纵横向跟踪。仿真结果表明,所提出的并行协同控制策略能够实现两车安全协同自动换道,同时提高换道效率。  相似文献   

3.
针对高速公路弯道路段安全换道问题,本文中基于侧向速度正态分布拟合方法,建立了考虑人-车-路相互作用的高速公路弯道路段车辆紧急避撞安全换道模型,并依据车辆安全避撞位置关系,提出了车辆弯道换道的安全性约束条件,获得了车辆制动换道方式下的车辆最小避撞安全距离。通过与传统模型和2自由度车辆动力学模型仿真对比,结果表明,该模型能较准确地描述车辆弯道路段换道运动轨迹和计算车辆避撞最小安全距离。车辆弯道避撞安全换道模型充分考虑了人、车、路之间的协同关系,为智能车辆与辅助驾驶的研究提供了参考。  相似文献   

4.
智能车辆系统辨识与控制算法研究   总被引:2,自引:0,他引:2  
采用逆M序列作为系统的输入信号,通过最小二乘算法得到车辆转向系统、驱动系统的传递函数,结合车辆预瞄运动学模型和车辆二自由度转向动力学模型,建立车辆转向控制与位置误差数学模型.根据现代控制理论设计最优导航控制器稳定跟踪目标路径,基于Backstepping函数控制算法,选取Lyapunov函数设计智能车辆换道及超车轨迹跟踪控制器.仿真分析和试验结果表明:所设计的控制器在智能车辆户外自主导航中具有良好的跟踪性能.  相似文献   

5.
在自动驾驶车辆与人工驾驶车辆混行的复杂交通环境中,如何减小驾驶行为截然不同的2类车辆间的复杂相互作用对于车辆行驶安全性、乘坐舒适性和交通通行效率的影响,是当前自动驾驶决策与控制领域亟待解决的关键问题。提出了一个人机混驾环境下人工驾驶车辆与自动驾驶车辆之间的非合作博弈交互框架。首先,综合考虑车辆加速度线性递减的驾驶人纵向操纵特性、差异化配合程度和不同的延迟响应特性,建立人工驾驶车辆的纵向博弈策略。其次,考虑自动驾驶车辆与周围车辆的安全性约束,以及自动驾驶车辆在换道过程中的舒适性和通行效率目标,设计了自动驾驶车辆的纵向博弈策略。然后,基于主从博弈理论对不同混驾环境下人工驾驶车辆与自动驾驶车辆的博弈交互问题进行求解,得到最优的换道间隙和自动驾驶车辆的纵向速度轨迹,并采用模型预测控制方法规划出自动驾驶车辆的横向安全换道轨迹。最后,根据人工驾驶车辆不同配合度和延迟响应时间的差异,设计了多组人机混驾试验工况进行验证。试验结果表明:自动驾驶车辆能够快速准确识别人工驾驶车辆的配合度,选择出最优的目标换道间隙,并与间隙周围的自动驾驶车辆协作来汇入目标间隙。在换道过程中,自动驾驶车辆始终与周围车辆保持安全...  相似文献   

6.
为提高智能车辆弯道换道的安全性能,对其换道轨迹跟踪控制进行了研究。考虑到纵向速度、横向速度及横摆角速度对换道过程的影响,建立了非完整约束条件下车辆的运动学和动力学模型。基于积分反演方法设计了外环车辆位姿控制器,将换道轨迹跟踪问题转换为在任意初始误差下跟踪参考位姿问题,基于非线性积分滑模控制方法设计了内环的动力学控制器,实现了对车辆运行速度的跟踪,分析了该控制系统的稳定性和收敛性。仿真结果表明,所建立的控制系统可保证跟踪误差全局一致有界收敛,具有较快的收敛性和对时变参数不确定性的鲁棒性。  相似文献   

7.
为提高换道安全性、稳定性和换道效率,本文中提出一种智能网联条件下多车协同安全换道策略。通过建立基于激励模型的换道收益函数进行协同换道可行性判断。基于模型预测控制建立协同换道多目标优化控制函数,实现换道过程的分布式控制。提出一个两阶段协同换道框架,将换道过程分为稀疏纵向距离阶段和换道阶段,以解决由于避撞约束的高维度和车辆运动学的非线性造成的最优控制函数难以求解的问题。采用滚动时域优化算法对优化控制问题逐步动态求解。最后基于美国NGSIM开源交通流数据进行Matlab/Simulink联合仿真,验证了该策略的可行性与准确性。  相似文献   

8.
基于风险评估的结果,如何实现智能车安全、合理、个性化的自主换道触发,是当下自主驾驶领域的研究热点。本文中基于人工势场理论,建立了障碍物的静态和动态风险场,从而对车辆周围的风险进行评估。之后对驾驶员日常驾驶数据中的换道数据进行提取和分析,得到个性化的换道触发。实车试验验证结果表明,采用本方法可很好地评估交通环境中的风险,实现个性化的换道触发。  相似文献   

9.
为实现车辆自主避撞,改善道路交通安全状况,提出一种基于线性路径跟踪控制的换道避撞控制策略。为实时确定制动和换道时机,获取跟车状态下自车和前车车速、加速度、相对距离以及驾驶人制动反应时间计算制动安全距离和换道安全距离,并在此基础上分别引入制动危险系数B和换道危险系数S评估制动与换道风险,使得车辆发生追尾碰撞的危险程度和主动干预阈值更直观。根据车辆期望横向加速度和期望横向位移的变化特性,采用5次多项式法规划符合驾驶人换道避撞特性的避撞路径。为保证换道避撞过程中驾驶人的安全舒适,采用最大横向加速度约束换道避撞轨迹。为实现对换道避撞路径的线性跟踪控制,保证车辆的操纵稳定性和横摆稳定性,基于车辆稳态动力学模型建立前馈控制,结合线性反馈控制消除换道路径的位置和横摆角偏差,修正参考路径实现直车道场景追尾避撞控制。仿真和实车交叉验证试验表明:根据车辆期望横向加速度和期望横向位移建立的符合驾驶人换道避撞特性的五次多项式换道路径与驾驶人实际换道避撞路径基本吻合,结合碰撞时间和车间时距的制动避撞控制策略能够在保证车辆行驶安全舒适性的同时有效避免车辆追尾碰撞,减少交通事故的发生。  相似文献   

10.
随着自动驾驶技术的发展,自动驾驶车辆获取的信息更加完善。为研究考虑前车安全速度效应条件下自动驾驶车辆对高速公路交通流的影响,以双车道元胞自动机模型为基础,建立考虑前车安全速度效应的跟驰规则和换道模型。利用MATLAB数值模拟高速公路异质交通流,分析考虑前车安全速度效应的自动驾驶车辆对道路交通流的影响,并分析车辆的拥堵情况和换道情况。研究表明,考虑前车安全速度效应的自动驾驶车辆可以显著提升道路通行能力,全自动驾驶车辆可达全人工驾驶车辆交通流的近似2倍;考虑前车安全速度效应的自动驾驶车辆的增加可以降低道路拥挤程度,全自动驾驶车辆比全人工驾驶车辆发生拥堵的临界密度提高了20 veh/km;自动驾驶车辆渗透率的增加会增加相应的换道次数,全自动驾驶车辆情况下,自动驾驶车辆基本不发生换道行为,同时智能网联车辆可以减小暴露碰撞安全性风险。  相似文献   

11.
面向人类驾驶和具备协同自适应巡航功能的网联自动驾驶组成的新型混合交通流,考虑道路交通特性、道路结构以及匝道汇入前主线交通状态等因素的交互作用机理,基于概率统计理论解析网联自动驾驶渗透率和编队长度间的耦合关系,进一步基于间隙接受理论分析匝道汇入交通对合流区通行能力的折减效应,建立快速路合流区通行能力模型,定量描述不同道路条件下合流区通行能力如何随网联自动驾驶渗透率和编队长度变化。模型中的道路交通特性、道路结构及匝道汇入前部分交通状态参数根据实际道路交通环境标定,提升了模型的通用性与可迁移性。搭建内嵌车辆动力学模块的Vissim仿真平台进行模型评估,结果表明,模型精度在80%以上,且在不同网联自动驾驶渗透率和编队长度条件下皆表现良好。   相似文献   

12.
路段上集群智能网联汽车的车队形成机制   总被引:1,自引:0,他引:1  
周思  柳祖鹏  陈玲娟  谭志鹏 《公路》2021,(2):210-215
智能网联汽车是解决城市交通问题的关键技术之一,对于未来城市智能交通体系建设有着关键作用。集群的智能网联汽车已经具备了涌现的基本条件,设计科学合理的交互规则,可以实现车辆的自组织,分布式涌现控制。以微观仿真软件VISSIM及C2X模块为研究平台,修改驾驶模型参数,在C2X模块中编程实现3条交互规则:速度一致、尽量靠近、避免碰撞,在仿真软件中构建单车道仿真模型,运行仿真实验,统计车辆在路段上不同距离形成车队情况,利用车头时距分布的熵值来衡量车流的有序性。仿真结果表明,车辆在运行至50s后初步形成车队,随着时间的增加,形成的车队越稳定,车流熵值在路段上随距离增加而减小,说明形成车队后更加有序,在路段上呈现出涌现现象。  相似文献   

13.
连续的跟驰行为和换道行为是驾驶行为的主要构成部分,对交通拥挤和交通事故有着重要影响。通过无人机视频拍摄和图像处理方式,提取了曹安公路沿线的2个交叉路口间正常交通流状态下共600条多车高精度轨迹数据。首先,考虑车辆类型对驾驶行为产生直接的影响,分析了大车和小车的车辆轨迹特征变量分布的差异性,包括速度、加速度、碰撞时间倒数、车头时距等,在标记危险驾驶行为的过程中考虑车辆类型的影响。其次,针对不同的车辆类型,利用修正碰撞裕度对跟驰行为和换道行为进行风险性评估,将其划分为安全型和风险型。根据风险型行为发生的顺序以及持续时间,评估驾驶人的整体驾驶状态是否危险,作为危险驾驶行为识别的样本标记。分别利用离散小波变换和统计方法提取车辆轨迹的关键特征参数,为了提高模型识别效率,将关键特征参数进行排序,从而确定最优判别指标;最后,利用轻量梯度提升机(LGBM)算法对危险驾驶行为进行识别,并与随机森林、多层感知器、支持向量机等算法在精度上进行比较。研究结果表明:在上述研究条件下,LGBM算法对危险驾驶行为的理论识别率最高可达93.62%,可以实现基于机器学习算法的危险驾驶行为的高精度自动识别,该结果对于智能驾驶辅助系统的设计、道路交通安全决策的制定具有显著的意义。  相似文献   

14.
车辆切入是常见的驾驶行为,频繁的变道切入行为影响了通行效率与交通安全。因此,揭示切入场景下的驾驶特性对研究交通拥堵和行驶安全机理具有重要意义。在自然驾驶数据的基础上,根据驾驶人的主观风险感知特性,探究驾驶人的切入行为发生条件,并在期望安全裕度(DSM)模型的基础上,标定了切入场景下的相关参数,根据标定结果进行切入场景下的队列跟驰仿真。仿真结果表明:在仿真区间内,队列的长度、行驶速度以及切入车的切入位置不同会影响队列的稳定性以及队列的调整,当队列长度由4辆变为13辆,速度由5 m/s增至20 m/s,切入车的位置由贴近前后车变为前后2辆车中间时,切入行为对队列的稳定性影响变得越小,队列越容易恢复到稳定状态。   相似文献   

15.
Summary This paper presents a real-time implementation of a general merging algorithm for automated highway systems. A merging control problem is proposed first. A real-time algorithm is then presented, which is used to calculate a smooth reference speed trajectory for the merging vehicle based on the speed of the main lane vehicle. This algorithm can also be applied even when the main lane vehicles change speed. To make the algorithm adapt to different road layouts and to increase safety, a concept of virtual platooning is proposed. It effectively shifts the time of platoon formation forward prior to the start of real merging. Aspects closely related to real-time implementation are discussed, such as the controller adopted, the use of magnetometer based distance measurement and information passing by communication from main lane vehicles. Test results are presented and briefly analyzed.  相似文献   

16.
针对智能车辆纵向运动时的交通道路适应性问题,考虑路面附着系数和前车运动速度等因素,研究了智能车辆纵向运动决策与控制方法。论文研究了基于车头时距的纵向运动决策方法并建立不同驾驶行为的目标车速模型,运用变论域模糊推理算法设计了目标加速度模型。基于纵向动力学模型,运用自适应反演滑模控制算法建立了驱动控制器和制动控制器。对高附着系数路面和低附着系数路面的行驶工况进行仿真试验验证,结果表明,在不同的附着系数路面和前车变速行驶条件下,智能车辆能实时、合理地决策目标车速、目标加速度,实现安全、高效、稳定的跟驰。  相似文献   

17.
Research and development involving intelligent vehicles of today is geared to safe, driver-friendly and sensitive vehicles that provide a driver with a pleasant and convenient driving environment while preventing him or her from possible risks of accident. In developing convenient and safe vehicles, research on drivers’ driving patterns, reactions and state characteristics depending on road conditions in actual field is essential in order to devise more driver-friendly intelligent vehicles. This paper describes how a driver-vehicle interaction (DVI) field database is built in order to obtain a driver’s input in normal road driving condition on highways, country roads, and city roads, and his or her state information, as well as data on the vehicle and traffic conditions. And the newly built database is compared with the RDCW FOT database established by UMTRI of the US for analysis to suggest that the driving tendencies of drivers in Korea and the road driving conditions are not the same as those in the US, reconfirming the need to establish a DVI field database, which will be used for the development of intelligent vehicles suitable for the Korean environment. The DVI data collected from actual driving in field are anticipated to be widely utilized as basic data for research on various intelligent driving safety systems, advanced driver assistance systems (ADAS) and human-vehicle interface (HVI) that are suitable for the driving environment in Korea.  相似文献   

18.
为了反映高速公路运营安全状况,提出了动态风险饱和度理论,构建了动态风险饱和度模型和计算方法。依据路段不同交通饱和度下车辆的驾驶行为,以路段交通安全为约束,研究了跟车行驶和换道行驶2种驾驶状态下,考虑车速变化及雾天等特殊天气条件影响的路段平均最小安全车头时距计算方法,利用建立的安全车头时距与安全流量之间的转换关系,得到不同驾驶状态下的路段安全流量。在不同车辆驾驶状态切换阈值下,计算路段实际交通流量与路段安全流量的比值得到高速公路路段动态风险饱和度值。以G3高速公路某改扩建路段所在路网为例进行验证,计算得到了路网中各路段不同切换阈值下的动态风险饱和度值。动态风险饱和度随着交通饱和度的增大,呈现稳定的先增大后减小的规律,且在换道行驶状态时达到最大,在跟车行驶状态时开始下降,与现有交通安全状态分析相吻合。相较于交通饱和度,动态风险饱和度更能够反应出高速公路路段交通安全动态变化的规律。   相似文献   

19.
路径规划及路径跟踪控制是智能汽车研究的关键技术,而复杂、时变的交通环境给智能汽车的路径规划与跟踪提出严苛要求。针对现有局部路径规划方法只适用于较为简单的工况,无法应对多车道、多静/动态障碍等复杂工况的问题,提出一种基于离散优化思想的动态路径规划算法。该算法利用样条曲线曲率变化均匀的特性,在s-ρ曲线坐标系中生成了一组参数化候选路径簇;考虑动态碰撞安全影响,在碰撞带约束下结合道路法规限制及车辆动态安全要求,规划车辆速度;此外,综合考虑静态安全性、舒适性、目标车道、道路占用率等影响因素,以选择最优路径。在路径跟踪层面,基于预瞄理论设计鲁棒性好、跟踪精度高的分数阶PID路径跟踪控制器,以跟踪误差最小为目标,采用粒子群优化算法对分数阶PID控制器参数进行整定。最后,基于Simulink/CarSim建立联合仿真平台,设计多车道,多静/动态障碍的复杂工况以验证该算法的有效性。研究结果表明:由于在评价函数中引入动态安全评价指标、目标车道评价指标以及道路占用率指标,极大地提升了规划器性能,使车辆在行驶过程中根据驾驶环境自主调整速度,降低换道次数,从而保证智能汽车的主动安全性能,提升了通行效率,使该算法能够较好地处理复杂动态环境下的避障问题。  相似文献   

20.
道路交通事故的分析表明,造成“群死群伤”交通事故的主要形态是客车碰撞、翻滚和跌落,这与驾驶人员、车辆行驶环境以及车辆的安全性能密切相关。研究公路客车的安全性技术,制定符合我国国情的安全性法规,是减少公路客车道路交通事故的主要手段,同时可以推动公路客车制造技术的进步和发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号