首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 973 毫秒
1.
大孔吸附树脂纯化八角枫根中水杨苷工艺   总被引:1,自引:0,他引:1  
研究大孔树脂纯化八角枫根中水杨苷的最佳工艺条件。以水杨苷的吸附率和解吸附率为评价指标,筛选树脂种类,并优化吸附和洗脱条件。8种大孔吸附树脂中,HPD-826型大孔树脂对水杨苷具有较好的吸附分离性能,最佳的纯化工艺条件为上样液质量浓度45.12μg/mL、最大上样量6.5BV、径高比1:8、洗脱流速3BV/h,先用4BV的水洗柱除去水溶性杂质,再用5BV体积分数30%乙醇溶液洗脱。经HPD-826型大孔树脂处理后的水杨苷回收率可达78%左右,HPD-826大孔树脂对水杨苷纯化的综合性能较好,工艺稳定、可行,适合于工业化生产。  相似文献   

2.
利用超滤和大孔树脂联用的方法对紫薯花色苷粗提液进行了纯化,考查了不同截留分子量超滤膜对花色苷粗提液的纯化效果。结果表明:截留分子量为10 ku的膜可有效透过花色苷和截留大分子物质,花色苷的透过率为86.54%,蛋白质截留率为93.67%,透过液的可溶性固形物含量降低了14.29%,透光率提高了23.78%。通过对6种不同极性的大孔吸附树脂对超滤透过液中花色苷的吸附及解吸能力的考查,发现LS-305的吸附性能较好。其动态吸附及解吸条件为:上样流速5.2 BV/h,上样量35 BV;60%乙醇洗脱体积为9 BV可洗脱完全。花色苷产品色价由纯化前的1.59提高到纯化后的32.89。HPLC分析表明超滤和树脂联用纯化方法未对紫薯花色苷成分造成影响。  相似文献   

3.
比较了NAK-9,X-5,AB-8,DM130,DA201,Sp850,XAD-7型大孔树脂对洛神花花色苷的吸附纯化效果,结果表明Sp850型大孔树脂对洛神花花色苷具有较好的吸附和解吸能力,在25℃条件下的吸附特征符合Langmuir等温吸附模型(R2=0.9961)。动态吸附和解吸研究表明,Sp850树脂吸附纯化洛神花花色苷的最佳参数为:上柱液溶液p H为2.0,上样流速2BV/h,此条件下每克Sp850树脂可处理14.3mg花色苷;洗脱剂为60%乙醇,解吸流速为2BV/h。可见光谱和HPLC分析可知纯化前后花色苷性质未发生变化,纯化后的洛神花花色苷纯度增加7.4倍,由5.8%变为36.8%,回收率达到64.9%。  相似文献   

4.
比较了七种大孔树脂对紫扁豆花色苷的静态吸附-解吸特性,研究了DM-28大孔树脂对紫扁豆花色苷静态、动态吸附-解吸工艺条件。结果表明:DM-28大孔树脂为纯化紫扁豆花色苷的最佳树脂;静态吸附-解吸最佳条件为:样液质量浓度0.554 4 mg/m L,样液p H 4.0,吸附温度40℃,吸附时间180 min,在p H 1.0,60%乙醇溶液条件下解吸;动态吸附-解吸最适工艺条件为:上样质量浓度0.277 2 mg/m L、上样流速1.5 m L/min,以流速2.5 m L/min,p H1.0的60%乙醇洗脱。纯化后花色苷色价为14.06,为纯化前的6.7倍。  相似文献   

5.
比较了6种大孔树脂对紫苏花色苷的吸附-解析性能,确定了纯化紫苏花色苷的工艺条件。结果表明:XDA-8树脂为纯化紫苏花色苷的最佳树脂,静态实验最优条件为:吸附平衡时间6h,pH2.5;解析平衡时间3 h,pH2.5。动态实验最优条件为:上样液质量浓度1.17 mg CGE/m L,上样流速3 BV/h,解析液乙醇体积分数60%,解析流速2 BV/h,解析液用量5 BV。纯化后的花色苷为紫红色粉末,其纯度为7.52%,比纯化前提高了8.26倍。HPLC分析表明,纯化前后花色苷的性质没有发生变化。  相似文献   

6.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

7.
XDA-1大孔树脂对芹菜黄酮分离纯化的研究   总被引:7,自引:4,他引:7  
通过比较6种大孔吸附树脂对芹菜提取物静态吸附性能,筛选出大孔吸附树脂XDA-1,对它的动态吸附分离条件的上样液浓度、洗脱溶剂及洗脱速率进行研究.结果表明:XDA-1大孔吸附树脂对芹菜黄酮的静态吸附率为88.18%,解吸率98.43%.本试验优化条件为:芹菜提取物总黄酮浓度为0.7025 mg/mL,上样流速为2 BV/h,洗脱液采用2 BV/h的洗脱流速,洗脱液为4 BV/h 70%的乙醇,树脂富集倍数为8.416.  相似文献   

8.
以三角梅苞叶为原料,研究HPD-300,AB-8,HPD-100A,HPD-700,HPD-100和D101六种大孔树脂对红色素的纯化作用,筛选D101大孔树脂作为吸附剂对色素进行静态和动态吸附试验,并运用SPSS 19.0对结果进行数据分析。结果表明,最佳静态吸附解吸工艺参数为质量浓度0.033 mg/m L,料液p H 2.0,时间3.0 h,洗脱剂50%乙醇;解吸剂p H 6.0,解吸时间2.5 h;最佳动态吸附解吸工艺参数为溶液p H 4;吸附流速4 m L/min,上样质量浓度0.024 mg/m L,最佳洗脱液位体积分数60%的乙醇;洗脱流速2 m L/min;解吸液为5.0 BV。  相似文献   

9.
目的利用大孔树脂来纯化马兰头中粗黄酮,并确定纯化黄酮的最佳工艺。方法以黄酮回收率为指标,在单因素实验的基础上运用Box-Behnken响应面法(response surface methodology,RSM)设计三因素三水平实验以获得最佳纯化条件。结果 HPD-600大孔吸附树脂纯化马兰头粗提液的最佳工艺条件为:上样浓度0.93 mg/mL、上样pH为3.00、洗脱剂体积分数为84.17%、吸附速率1 BV/h,洗脱速率1 BV/h,此条件下马兰头总黄酮的质量分数由纯化前的4.11%提高到纯化后的50.80%。结论利用HPD-600型大孔树脂可以较好地纯化马兰头中的总黄酮。  相似文献   

10.
通过静态吸附和解吸试验比较D101、AB-8、HPD-100、HPD-100A、HPD-200A、HPD-300、HPD-500和HPD-600大孔树脂对美洲合欢花花色苷的吸附和洗脱性能,优化D101大孔树脂纯化美洲合欢花花色苷的工艺条件。采用高效液相色谱(HPLC)对比分析纯化前后美洲合欢花花色苷。结果表明, D101最适合用于美洲合欢花花色苷的分离纯化,其静态吸附-解吸最优条件为:上样质量浓度1.5 mg/mL、pH 2.0、洗脱液采用60%酸化乙醇(pH2.0)。动态吸附-解吸最适工艺条件为:上样液流速2 mL/min、洗脱流速1 mL/min。  相似文献   

11.
紫甘薯花色苷生产中紫薯蛋白的分离与富集   总被引:1,自引:1,他引:0  
为了将紫甘薯色素提取液中的花色苷与蛋白分离,选择不同型号的大孔吸附树脂对紫甘薯色素提取液进行了吸附与解吸实验,筛选出特异性吸附提取液中色素的树脂.并利用大孔吸附树脂对流出液中紫甘薯蛋白进行富集.实验结果表明:ADS-7型树脂能有效将提取液中的花色苷与蛋白分离,分离程度达70%以上;流出液以1BV/h、2mg/mL流经树...  相似文献   

12.
分别对12种大孔吸附树脂和6种阳离子交换树脂对桑葚花色苷的吸附性能进行了比较,通过静态吸附和解吸实验筛选出最佳大孔吸附树脂为LX-68,最佳阳离子交换树脂为D001。分别对这2种树脂进行静态和动态条件优化,确定了LX-68树脂最佳纯化条件为:以吸光度值0.991,pH值为3的色素液,8BV/h上样,用pH值为2、体积分数为80%的酸性乙醇作洗脱剂,洗脱流速为1BV/h,纯化后色素色价为114,纯度为39.9%,花色苷收率为91.5%。D001树脂最佳纯化条件为:以吸光度1.411Abs,pH值为2的色素液,6BV/h上样,用pH值为1、60%的酸性乙醇以3BV/h的洗脱流速洗脱,得到色价为65的色素粉末产品,纯度为24.1%,花色苷收率为67.6%。LX-68树脂和D001树脂对桑葚花色苷均具有较好的吸附分离性能,且LX-68树脂的分离效果优于D001树脂。  相似文献   

13.
为研究大孔树脂对大黄5种蒽醌的分离效果,本文采用静态吸附实验,比较6种大孔树脂(HPD-100、XDA-6、AB-8、LX-38、ADS-7和ADS-17)对5种游离蒽醌(芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚)的吸附及解吸附性能,筛选出对大黄5种蒽醌吸附率和吸附率最高的大孔树脂。然后以筛选的大孔树脂作为载体,对其动态吸附特性进行了初步研究。结果显示,HPD-100大孔树脂对大黄5种蒽醌吸附率和吸附率最高;在层析柱径高比1:8,上样溶液5种蒽醌总浓度为3.64 mg/mL,上样体积2.0 BV,流速1.0 BV/h,85%的乙醇洗脱,洗脱体积为3.0 BV的优化条件下,HPD-100对5种蒽醌的动态吸附率为86.3%,洗脱率为85.9%,5种蒽醌总含量增加了2.88倍,由原来的7.13%增加到20.5%,总回收率98.7%,提取物中残留的离子液体[bmim]Br也同时被除去,表明本实验选择的优化条件具有可行性。  相似文献   

14.
目的:为探索适宜分离和纯化桑白皮多糖的大孔树脂,研究其最佳纯化工艺参数。方法:通过静态吸附-洗脱试验对十种不同型号大孔树脂(H103、HP20、AB-8、X-5、D-101、DM301、DA-201、NKA-9、HPD-722、HPD300)的吸附量、吸附率及解吸率进行考察,优选最佳纯化树脂,并研究了上样液pH、上样质量浓度、上样速度、洗脱剂体积分数、洗脱剂用量及洗脱流速对其纯化工艺的影响,确定最佳纯化工艺参数。结果:D-101型为最优树脂,最佳上样条件为:pH=3.0、上样浓度为4.0 mg/mL、上样速度为2.0 BV/h;最佳洗脱条件为:75%的乙醇洗脱液、洗脱剂用量为3.5 BV、流速为1.0 BV/h。经过该工艺纯化后,桑白皮中多糖的纯度由16.12%±1.20%提高到了74.45%±1.15%。结论:D-101型大孔树脂能够很好的富集、纯化桑白皮中的多糖,为更高效的利用桑白皮资源提供了理论依据。  相似文献   

15.
对超声波辅助提取紫马铃薯花色苷工艺条件进行优化,并用NKA-9大孔吸附树脂进行纯化,液相色谱结合紫外-可见光谱扫描分离和鉴定花色苷组成。结果表明:花色苷最佳提取条件为料液比1:50(2.5g/100mL柠檬酸溶液)、超声功率400W、提取温度45℃、提取时间10min,以干质量计算紫马铃薯种花色苷含量为1.362mg/g;用NKA-9大孔吸附树脂纯化,8倍柱床体积洗脱出占总量98.35%的的花色苷,花色苷纯度达到90.23%;高效液相色谱鉴定出紫马铃薯含有5种组分,其中3种分别是矢车菊素-3-葡萄糖苷、矢车菊素-3-芸香糖苷和芍药-3-葡萄糖苷,其含量分别为0.27、0.057mg/g和0.46mg/g,三者总和占马铃薯中总花色苷含量的57.78%。马铃薯中含量最高的花色苷成分出峰保留时间为12.224min,其结构未知。  相似文献   

16.
在12种大孔树脂静态吸附和解吸、静态吸附动力学基础上,研究上样液、洗脱剂乙醇浓度对较优大孔树脂动态吸附和解吸率的影响,并以维生素C和芦丁为对照,对甜茶叶粗黄酮与精黄酮的清除DPPH·能力和总抗氧化能力(T-AOC)进行对比分析。结果表明,HPD-450大孔树脂为甜茶叶总黄酮分离纯化的最佳大孔树脂,其最佳纯化工艺条件为:上样液质量浓度为1.2875 mg/mL,上样量100 mL (上样量体积与树脂质量比为10:3),上样液以1.5 BV/h流速上柱,依次用2 BV水洗脱,170 mL 55%乙醇洗脱。纯化后精黄酮纯度为31.79%,回收率为90.49%。甜茶叶粗黄酮、甜茶叶精黄酮、维生素C、芦丁对DPPH·的IC50值分别为0.0187、0.0202、0.0175和0.0265 mg/mL,表明甜茶叶粗黄酮比甜茶叶精黄酮具有较强的清除DPPH·能力,甜茶叶粗黄酮、精黄酮对DPPH·清除能力均低于维生素C而高于芦丁。从总抗氧化能力(T-AOC)效果评判,在0.02 mg/mL浓度组内,甜茶叶粗黄酮总抗氧化能力显著(P<0.05)大于其他;在0.03、0.04 mg/mL浓度组内,甜茶叶粗黄酮总抗氧化能力大于甜茶叶精黄酮但两者差异不显著,而两者均显著(P<0.05)大于维生素C。  相似文献   

17.
黄思梅  张镜 《食品科学》2009,30(22):77-80
阴香花色苷粗提物石油醚除脂后,以大孔吸附树脂DA201、DM301、DS401、D101 和 DM-18 进行了纯化技术的研究。静态吸附实验结果表明:DM-18 对阴香花色苷的吸附力最强,吸附量57.93mg/g,静态吸附平衡时间120min,80% 乙醇溶液的解吸率88.47%。DM-18 吸附花色苷动态解吸参数正交试验结果是:70% 乙醇最适洗脱剂、流速0.75BV/h 及pH3.0。  相似文献   

18.
采用柱层析法对野生越橘花色苷分离纯化进行研究。结果表明:HPD-700型大孔树脂对野生越橘花色苷的分离效果最佳,其适宜的分离条件为样品液pH2.0、花色苷质量浓度0.75mg/mL、最大上样量22BV、上样流速0.5mL/min,样品洗脱最佳乙醇体积分数60%、以流速1.5mL/min速度洗脱时、洗脱液量5BV为洗脱终点。该工艺生产的花色苷产品为紫黑色粉末,色价为62.40,回收率为86.20%。  相似文献   

19.
为了筛选出对紫玉米花青素粗提液纯化性能好的树脂,采用AB-8型、X-5型、D101型和NKA-9型4种大孔树脂对紫玉米花青素进行静态吸附和解吸实验,研究了大孔树脂对紫玉米花青素的静态吸附动力学曲线,以Langmuir单层吸附方程制定吸附等温曲线,并研究了不同pH条件下对大孔吸附树脂吸附的影响及不同树脂的解吸特性。结果表明:X-5树脂吸附平衡速率常数最大,达到饱和吸附量所用时间最短,经Langmuir单层吸附回归方程预测出X-5树脂静态吸附时最大吸附量可达到53.1915mg/g。在pH=4时,饱和吸附量最大。因而X-5可用做纯化紫玉米花青素较为合适的吸附剂,解吸时宜选用40%乙醇做为洗脱液。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号