首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
目的 总结根据脑深部电刺激术(deep brain stimulation,DBS)电极植入位置和术中电生理信号选择触点进行开机后首次程控的经验.方法 分析60例接受DBS的帕金森病(Parkinson's disease,PD)病例资料,根据DBS术后程控不同,分为研究组30例和对照组30例.对照组采用传统调控法,每...  相似文献   

2.
目的探讨医用生物蛋白胶(TFS)在帕金森病脑深部电刺激术(DBS)中的应用效果。方法将帕金森病DBS患者随机分成2组,即TFS使用组和未使用组,比较两组脑脊液漏和气颅发生的比例及术后脑深部电极的位置。结果使用TFS组中,未发生明显的脑脊液漏,未有气颅的发生,脑深部电极的位置与靶点位置相差均在1m m以内,而在未使用TFS组中产生气颅4例,其中1例合并脑脊液皮下积聚。这4例患者有2例电极位置与靶点坐标在Z轴上相差3m m,有2例在Z轴上相差6m m。结论TFS可有效地防止术中的脑脊液漏,和术后气颅的发生及电极的移位。  相似文献   

3.
目的 探讨脑深部电极刺激术(DBS)手术并发症的产生原因及防治方法.方法 对278例(531侧)接受DBS治疗的患者发生的手术并发症及其处理方法进行回顾性分析.结果 DBS手术并发症的发生主要与手术操作、治疗靶点的选择与定位、刺激器装置等方面有关.其中与手术相关的并发症为脑内血肿、术后癫痫、脑脊液漏等;与刺激靶点选择和定佗相关的并发症有异动症、构音障碍、眼睑下垂等;与植入装置相关的并发症有电极折断、电极移位、装置故障等.结论 严格与细致的手术操作、选择正确的手术方式、精细的术后程控可有效地减少和预防DBS手术并发症的发生.  相似文献   

4.
目的 探讨脑结构位移对脑深部电刺激(DBS)电极移位的影响及其相关因素。方法 回顾性分析2018年10月—2021年6月北京天坛医院收治的268例接受双侧丘脑底核(STN)DBS和31例接受双侧苍白球内侧部(GPi)DBS的患者。电极定位基于术前磁共振成像(MRI)、术后即刻和长期随访的计算机断层扫描(CT)。进一步,研究者还测量了单侧气颅体积百分比(uPVP)和脑体积百分比,探究其是否会影响电极移位。结果 采用医学图像配准软件(ANTs)和脑结构位移校正可以精确配准。在STN-DBS中,使脑结构位移影响最小化后,电极术后即刻的位置向内(0.29±0.47)mm,向后(0.63±0.55)mm。在GPi-DBS中,得到了不同的结果,向内(0.21±0.66)mm,向后(0.96±0.53)mm,向腹(0.17±0.67)mm。并且uPVP与电极移位显著相关。结论 术后即刻电极位置向内,向后,向腹侧移位,并且与uPVP有关。  相似文献   

5.
目的探讨帕金森病(PD)患者脑深部电刺激(DBS)术最佳刺激靶点的位置。方法 40例PD患者接受立体定向双侧丘脑底核(STN)脑深部电刺激术。术中通过微电极记录采集神经元电活动,埋置脑深部电刺激器,术后复查电极位置,通过影像资料和电生理数据,确定电极尖端坐标,并计算电极各触点坐标,以及电极针道中STN上下边界和中心点的坐标。结果最佳刺激触点中心坐标的平均位置与STN上边界坐标的平均位置的差异无统计学意义。结论 STN上边界区域为DBS治疗PD的最佳刺激位置。  相似文献   

6.
目的探索准确定位灵长类动物恒河猴大脑深部核团的方法,并以伏隔核作为靶点建立脑深部电刺激恒河猴模型。方法4只恒河猴头颅通过自制适配器固定于CRW-FN立体定位头架,行1.0T磁共振薄层扫描,参考恒河猴脑磁共振和病理对照图谱确定双侧伏隔核位置并计算其坐标,植入脑深部电刺激(deep brain stim-ulation,DBS)电极,利用耳脑胶及内固定钛网固定电极于骨窗处,余部分置于项背部皮下;术后1周,行1.0T磁共振薄层扫描,观察电极位置,由放射科医师测量8个DBS电极末端与同侧伏隔核预定靶点的距离。结果设计出准确的可调节恒河猴脑深部核团定位方法,使4只恒河猴均成功植入双侧电极,术后磁共振复查示电极颅内部分无弯曲、移位,电极末端与伏隔核中心前后方向差距为0.64±0.28 mm,左右方向差距为0.34±0.17 mm。结论通过自制适配器,可以将临床MRI引导有框架立体定向手术系统用于恒河猴,实现个性化、准确的脑深部核团定位和DBS植入。  相似文献   

7.
目的:探讨重度痴呆患者行下丘脑/穹隆核脑深部电刺激(DBS)电极植入的技术及安全性。方法介绍接受下丘脑/穹隆核 DBS 治疗的3例重度原发性神经系统痴呆患者手术方法,观察电极植入的靶点位置、手术操作的不良反应和电极植入的安全性。结果电极植入位置准确,3例患者术后磁共振或 CT 扫描证实电极均位于术前设计靶点位置,术中及术后均无手术操作相关的不良反应,术后3个月随访电极植入安全,无感染、电极移位等并发症。结论严格按照电极植入技术流程进行操作,可保证下丘脑/穹窿核 DBS 电极植入位置准确,术中及术后患者安全。  相似文献   

8.
目的观察脑深部电刺激术(DBS)使用国产刺激器异频程控治疗Meige综合征的疗效。方法回顾性分析1例Meige综合征的病例资料,在双侧苍白球内侧核(Gpi)植入国产电极刺激器,术中采用微电极准确定位靶点,术后1个月开机进行常规程控,3个月后实施左右异频程控。采用肌张力障碍评分量表(BFMDRS)评价疗效。结果术后1个月开机,症状明显改善,BFMDRS从术前22分降至6分。但由于右侧电极触点邻近内囊后肢,刺激电压较低,病人出现左侧肢体发麻现象,通过增加左侧刺激电压达到治疗效果。术后3个月时症状反复,BFMDRS评分升至10分;改用左右异频刺激,通过降低右侧刺激频率,提升右侧电压改善症状,并降低左侧电压以减少耗电量,病人左侧肢体麻感消失,症状进一步改善,BFMDRS降至4分。结论国产脑深部电刺激器实施双侧Gpi DBS治疗Meige综合征效果理想,左右异频刺激可降低不良反应,进一步提高疗效。  相似文献   

9.
目的 观察双侧丘脑底核-脑深部电刺激术( STN - DBS)治疗3例Meige综合征患者的术后长期疗效.方法 3例Meige综合征患者接受双侧脑深部电极刺激术,术中微电极记录确定准确靶点定位,术后进行参数程控.术后1、3、6、12、24个月及最后一次复诊时进行随访,采用BFMDRS评价治疗效果,观察参数变化.结果 3例患者术后症状均得到明显改善,术后1个月时3例患者BFMDRS总评分、运动评分及功能障碍评分均有下降,术后3-6个月3例患者BFMDRS总评分、运动评分及功能障碍评分改善最明显,改善率达到90%以上,6个月后疗效稳定.结论 STN- DBS治疗3例Meige综合征患者效果理想,可以成为治疗Meige综合征的一种选择.  相似文献   

10.
目的 通过Stimloc电极固定装置和美敦力早期电极固定装置(Medtronic 3389 - 40,3387 -40)固定脑深部电极位置移位的对照性研究,探讨Stimloc固定电极的稳定性和安全性,以及对早期固定装置的改进.方法 脑深部电刺激术( deep brain stimulation)后复查头颅MRI,计算Stimloc 固定脑深部电极的20例(35侧)患者,电极移位的平均距离.与早期电极固定装置( Medtronic 3389-40,3387 - 40)固定电极(35侧)移位的平均距离进行比较性研究.结果 Stimloc组,35侧电极平均移位1.8 mm,而对照组则达到了3.4 mm.两组数值差异有统计学意义(P=0.04).两组数据显示电极深度的移位差异有统计意义(P =0.006).Stimloc组43%的电极埋置位置过浅,对照组83%的电极埋置位置过深.结论 采用Stimloc固定电极移位的距离明显小于对照组.  相似文献   

11.
The purpose of this study was to evaluate the accuracy of stereotactic electrode placement in patients undergoing deep brain stimulation by using pre- and postoperative computed tomography (CT). Twenty-three patients with movement disorders (Parkinson's disease (n = 7), tremor (n = 9), dystonia (n = 7)) treated with bilateral deep brain stimulation (DBS) (overall 46 target points) were investigated. The target point of the electrode was planned stereotactically in combination with a preoperative stereotactic helical computed tomography (CT). A postoperative CT, which was carried out still in the operating room while the patient had the stereotactic frame on the head, was performed in order to control the position of the electrodes in relation to the previously planned target point. The position of the four electrode contacts was measured according to the Talairach space (AC–PC line) and compared with the coordinates of the planned target point. The mean spatial distance of planned target perpendicular to the electrode was 1.32 ± 0.75 mm. These results show the high accuracy of stereotactic implantation of DBS electrodes assisted by pre- and postoperative image fusion with computed tomography (CT).  相似文献   

12.
目的探讨螺旋CT三维血管成像(3D-CTA)技术术前评估颅底脑膜瘤的价值。方法回顾性分析2012-01—2013-12我院收治的术前诊断为颅底脑膜瘤52例患者,于术前1周行3D-CTA及MRI相关检查,比较3D-CTA及全脑血管造影(DSA)对脑肿瘤血供情况的诊断,并与术中所见进行比较,术前根据3D-CTA及MRI检查结果确定手术方案。结果3D-CTA术前诊断肿瘤单纯颈外动脉供血25例,单纯颈内动脉供血14例,颈内外混合供血13例,DSA术前诊断单纯颈外动脉供血28例,单纯颈内动脉供血12例,颈内外混合供血12例;经比较两种诊断方式对患者术前肿瘤血供情况诊断差异无统计学意义(P0.05);术中所见患者肿瘤单纯颈外动脉供血25例,单纯颈内动脉供血12例,颈内外混合供血15例,3D-CTA术前扫描诊断与术中所见差异无统计学意义(P0.05)。结论 3D-CTA术前扫描能够有效显示颅底脑膜瘤患者的肿瘤血供情况、肿瘤及其周围血管的关系,对于术前手术方案的制定具有指导性意义,增加了患者手术的安全性,值得临床推广。  相似文献   

13.

Background

Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is an emerging experimental therapy for treatment-resistant depression. New developments in SCC DBS surgical targeting are focused on identifying specific axonal pathways for stimulation that are estimated from preoperatively collected diffusion-weighted imaging (DWI) data. However, brain shift induced by opening burr holes in the skull may alter the position of the target pathways.

Objectives

Quantify the effect of electrode location deviations on tractographic representations for stimulating the target pathways using longitudinal clinical imaging datasets.

Methods

Preoperative MRI and DWI data (planned) were coregistered with postoperative MRI (1 day, near-term) and CT (3 weeks, long-term) data. Brain shift was measured with anatomical control points. Electrode models corresponding to the planned, near-term, and long-term locations were defined in each hemisphere of 15 patients. Tractography analyses were performed using estimated stimulation volumes as seeds centered on the different electrode positions.

Results

Mean brain shift of 2.2 mm was observed in the near-term for the frontal pole, which resolved in the long-term. However, electrode displacements from the planned stereotactic target location were observed in the anterior-superior direction in both the near-term (mean left electrode shift: 0.43 mm, mean right electrode shift: 0.99 mm) and long-term (mean left electrode shift: 1.02 mm, mean right electrode shift: 1.47 mm). DBS electrodes implanted in the right hemisphere (second-side operated) were more displaced from the plan than those in the left hemisphere. These displacements resulted in 3.6% decrease in pathway activation between the electrode and the ventral striatum, but 2.7% increase in the frontal pole connection, compared to the plan. Remitters from six-month chronic stimulation had less variance in pathway activation patterns than the non-remitters.

Conclusions

Brain shift is an important concern for SCC DBS surgical targeting and can impact connectomic analyses.  相似文献   

14.
目的 探讨MRI相关数据测量在单鼻孔经碟垂体腺瘤的手术方面的指导作用.方法 术前对MRI矢状位影像进行测量,数据1:外鼻孔下缘至鞍底前壁中点距离,数据2:下颚与上述测量线的夹角;利用蝶窦喙突部相对固定于中线位置,三者结合确定鞍底手术方向及深度.将所测量的数据应用于手术中.结果 35例外鼻孔下缘至鞍底前壁中点距离为63~103 mm,平均76.85 mm.鼻道下壁与上述测量线的夹角20.6~33.9°,平均27.52°,将所测量的数值应用于术中,所有患者均顺利抵达鞍底切除肿瘤.结论 利用MRI资料,采集实用性数据对患者进行个性化的解剖研究,对手术具有较大指导意义.  相似文献   

15.
Deep brain stimulation is typically performed with intraoperative microelectrode recording and test stimulation for target confirmation. Recent studies have shown accurate, clinically efficacious results after lead placement without microelectrode recording or test stimulation, using interventional magnetic resonance imaging (MRI) or intraoperative computed tomography (CT; iCT) for verification of accuracy. The latter relies on CT–MRI fusion. To validate CT–MRI fusion in this setting, we compared stereotactic coordinates determined intraoperatively using CT–MRI fusion with those obtained on postoperative MRI. Deep brain stimulation electrodes were implanted with patients under general anesthesia. Direct targeting was performed on preoperative MRI, which was merged with preimplantation iCT images for stereotactic registration and postimplantation iCT images for accuracy confirmation. Magnetic resonance imaging was obtained 6 weeks postoperatively for comparison. Postoperative MRI was obtained for 48 patients, with 94 leads placed over a 1‐year period. Vector error of the targeted contact relative to the initial plan was 1.1 ± 0.7 mm on iCT and 1.6 ± 0.7 mm on postoperative MRI. Variance comparisons (F‐tests) showed that the discrepancy between iCT‐ and postoperative MRI‐determined errors was attributable to measurement error on postoperative MRI, as detected in inter‐rater reliability testing. In multivariate analysis, improved lead placement accuracy was associated with frame‐based stereotaxy with the head of the bed at 0° compared with frameless stereotaxy with the head of the bed at 30° (P = 0.037). Intraoperative CT can be used to determine lead placement accuracy in deep brain stimulation surgery. The discrepancy between coordinates determined intraoperatively by CT–MRI fusion and postoperatively by MRI can be accounted for by inherent measurement error. © 2014 International Parkinson and Movement Disorder Society  相似文献   

16.
OBJECTIVES: Bilateral chronic high frequency stimulation of the subthalamic nucleus (STN), through the stereotactical placement of stimulating electrodes, effectively improves the motor symptoms of severe Parkinson's disease. Intraoperative neurophysiological and clinical monitoring techniques (neuronal electrical activity recording and intraoperative stimulation) may improve and refine the localisation of the nucleus. The objective of this work was to compare the preoperative CT and MRI localisation with the intraoperative neurophysiological identification of STN. The relation between the localisation of the STN and the position of the most effective contact of the permanent quadripolar electrode at a 3 month and 1 year follow up was also studied. METHODS: Fourteen consecutive parkinsonian patients were submitted to bilateral implant for STN stimulation. All the patients underwent a standard MRI and stereotactic CT to obtain, by image fusion and localisation software, the stereotactical coordinates of STN. The STN extension and boundaries were identified by a semimicrorecording of the neuronal electrical activity. The definitive quadripolar electrode was positioned to locate at least two contacts within the STN recording area. Intraoperative macrostimulation was performed to confirm the correct position of the electrode. Postoperative clinical evaluation of the effects of stimulation was checked for each contact of the quadripolar electrode testing the improvement on contralateral rigidity to select the best contact. This evaluation was repeated at 3 months and 1 year after surgery. RESULTS: In 35.7% of the procedures it was necessary to perform more than one track to get a recording of neuronal activity consistent with STN. The mean position of the central point of all the 28 STN recording areas in respect of the AC-PC line midpoint was 2.7 mm posterior (SD 0.7), 3.8 mm inferior (SD 1.1), and 11.6 mm lateral (SD 0.9), and the mean distance between the anatomical target and the central point of the STN as defined by intraoperative recording was 0.5 mm (SD 0.5) on the anteroposterior plane, 0.7 mm (SD 0.7) on the lateral plane, and 0.9 mm (SD 0.6) on the vertical plane. At 1 year the mean position of the central point of the most effective contact of the electrode in respect of the AC-PC line midpoint was 1.7 mm posterior (SD 0.9), 1.7 mm inferior (SD 1.5), and 12.3 mm lateral (SD 0.9). CONCLUSION: The results highlight the role of the intraoperative recording to get a more accurate localisation of the STN in surgery for Parkinson's disease, allowing the identification of the boundaries and of the extension of the nucleus. The most effective contact of the quadripolar electrode was always in the upper part of the STN recording area or immediately above it, suggesting a role of this region in the clinical effectiveness of the STN electrical stimulation.  相似文献   

17.
OBJECTIVES: To define the role of magnetic resonance imaging (MRI) and intraoperative electrophysiological recording in targeting the subthalamic nucleus (STN) in Parkinson's disease and to determine accuracy of electrode placement. PATIENTS AND METHODS: We implanted 54 electrodes into the STN in 27 patients. Target planning was done by coordinate guidelines and visualising the STN on MRI and defined in relation to the mid-point of the AC-PC line. Intraoperative microelectrode recording was used. We adjusted electrode positions for placement in the centre of the STN electrical activity and verified this on postoperative MRI in 16 cases, which were fused to the preoperative images to measure actual error in electrode placement in the three axes. RESULTS: Based on coordinate calculation and MRI localisation, the mean of the target was 11.5 mm lateral, 2.5 mm posterior and 4.1 mm inferior to the mid-point of the AC-PC line. Fifty good electrophysiological recordings of the STN (average length 4.65 mm) were achieved and target point adjusted in 90% of lead placements. The mean of the final target after electrophysiological correction was 11.7 mm lateral, 2.1 mm posterior, and 3.8 mm inferior to the mid-point. The distance from the centre of the electrode artefact to the final target used after electrophysiological recording on the fused images was 0.48 mm, 0.69 mm, and 2.9 mm in the x, y, and z axes, respectively. No postoperative MRI related complication was observed. CONCLUSION: Both direct visualisation of the STN on MRI and intraoperative electrophysiological recording are important in defining the best target. Individual variations exist in the location of the STN target. Fewer tracks were required to define STN activity on the side operated first. Our current stereotactic method of electrode placement is relatively accurate.  相似文献   

18.
目的 探讨脑深部STN刺激靶点对MRI直接定位法和MER术中导引定位法的解剖学偏差。方法 本组5例帕金森病患,分别表现为运动迟缓、步态不稳及躯干症状,共安放16例次微电极。结果 采用MRI直接定位法和MER术中导引定位法,其定位靶点的平均偏差距离是1.25nm,尽管该偏差值较小,但是,基于影像学的立体定向法只能将刺激电极定位于距离靶点几毫米的范围内。结论 电生理学方法(MER)对于调整和确定靶点位置至关重要。MER术中导引定位法有助于手术的完全成功。  相似文献   

19.
Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective treatment in primary dystonia. Its success depends on the implantation accuracy of the DBS electrode into the targeted GPi. Discrepancies of up to 4 mm between the initial target, selected on preoperative MRI, and the final DBS lead location are caused mainly by caudal brain shift that occurs once the cranium is open. Nowadays, transcranial sonography (TCS) can display echogenic deep brain structures with higher image resolution compared to MRI under clinical conditions. Here, we demonstrate for the first time the use of a contemporary clinical high‐end TCS system for intraoperative monitoring of DBS electrode position. Herewith, a high‐resolution real‐time imaging of closely located microelectrodes and of the DBS lead through the intact skull is feasible. Simultaneous color‐coded sonographic imaging of arteries near the anatomical target allows further intraoperative refinement of DBS lead positioning, simultaneously preventing hemorrhages. © 2009 Movement Disorder Society  相似文献   

20.
低场强术中磁共振环境下的神经电生理监测   总被引:1,自引:1,他引:0  
目的 探讨低场强iMRI环境下神经电生理监测(IOM)的操作特点与临床初步体会.方法 分析9例功能区脑肿瘤10M及iMRI的联合应用情况.采集IOM基线,与iMRI环境下的波形比较;记录iMRI影像畸变及电刺激相关不良事件.术后早期复查MRI评估肿瘤切除隋况.结果 9例行IOM均获得稳定波形.1例前置放大器冈磁电效应损坏,未观察到热损伤或电极移动损伤.iMRI 7例局部信号缺失;3例发现肿瘤残余.术后随访MRI 7例全切,2例次全切除,与iMRI判断一致.结论 低场强iMRI环境下,IOM可获得稳定波形.二者联合应用,有助于病变安全切除.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号