首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Y Kanai  M A Hediger 《Nature》1992,360(6403):467-471
  相似文献   

2.
3.
M R Plummer  P Hess 《Nature》1991,351(6328):657-659
N-type calcium channels are thought to be expressed specifically in neuronal cells and to have a dominant role in the control of neurotransmitter release from sympathetic neurons. But their unitary properties are poorly understood and the separation of neuronal Ca2+ current into components carried by N-type or L-type Ca2+ channels is controversial. Here we show that individual N-type Ca2+ channels in sympathetic neurons can carry two kinetically distinct components of current, one that is rapidly transient and one that is long lasting. The mechanism that gives rise to these two components is unexpected for Ca2+ channels: a test depolarization elicits either a rapidly inactivating, single short burst with an average duration of 40 ms, or sustained, noninactivating channel activity lasting for over 1 s. The switching between inactivating and noninactivating activity is a slow process, the occurrence of each type of unitary kinetic behaviour remaining statistically correlated over several seconds. Variable coupling of inactivation in N-type Ca2+ channels could be an effective mechanism for the modulation of neuronal excitability and synaptic plasticity.  相似文献   

4.
Integration and processing of electrical signals in individual neurons depend critically on the spatial distribution of ion channels on the cell surface. In hippocampal pyramidal neurons, voltage-sensitive calcium channels have important roles in the control of Ca2(+)-dependent cellular processes such as action potential generation, neurotransmitter release, and epileptogenesis. Long-term potentiation of synaptic transmission in the hippocampal pyramidal cell, a form of neuronal plasticity that is thought to represent a cellular correlate of learning and memory, is dependent on Ca2+ entry mediated by synaptic activation of glutamate receptors that have a high affinity for NMDA (N-methyl(-D-aspartate) and are located in distal dendrites. Stimuli causing long-term potentiation at these distal synapses also cause a large local increase in cytosolic Ca2+ in the proximal regions of dendrites. This increase has been proposed to result from activation of voltage-gated Ca2+ channels. At least four types of voltage-gated Ca2+ channels, designated N, L. T and P, may be involved in these processes. Here we show that L-type Ca2+ channels, visualized using a monoclonal antibody, are located in the cell bodies and proximal dendrites of hippocampal pyramidal cells and are clustered in high density at the base of major dendrites. We suggest that these high densities of L-type Ca2+ channels may serve to mediate Ca2+ entry into the pyramidal cell body and proximal dendrites in response to summed excitatory inputs to the distal dendrites and to initiate intracellular regulatory events in the cell body in response to the same synaptic inputs that cause long-term potentiation at distal dendritic synapses.  相似文献   

5.
B Barbour  H Brew  D Attwell 《Nature》1988,335(6189):433-435
Uptake of glutamate into glial cells in the CNS maintains the extracellular glutamate concentration below neurotoxic levels and helps terminate its action as a neurotransmitter. The co-transport of two sodium ions on the glutamate carrier is thought to provide the energy needed to transport glutamate into cells. We have shown recently that glutamate uptake can be detected electrically because the excess of Na+ ions transported with each glutamate anion results in a net current flow into the cell. We took advantage of the control of the environment, both inside and outside the cell, provided by whole-cell patch-clamping and now report that glutamate uptake is activated by intracellular potassium and inhibited by extracellular potassium. Our results indicate that one K+ ion is transported out of the cell each time a glutamate anion and three Na+ ions are transported in. A carrier with this stoichiometry can accumulate glutamate against a much greater concentration gradient than a carrier co-transporting one glutamate anion and two Na+ ions. Pathological rises in extracellular potassium concentration will inhibit glutamate uptake by depolarizing glial cells and by preventing the loss of K+ from the glutamate carrier. This will facilitate a rise in the extracellular glutamate concentration to neurotoxic levels and contribute to the neuronal death occurring in brain anoxia and ischaemia.  相似文献   

6.
Glutamate is the main excitatory neurotransmitter in the mammalian central nervous system and is removed from the synaptic cleft by sodium-dependent glutamate transporters. To date, five distinct glutamate transporters have been cloned from animal and human tissue: GLAST (EAAT1), GLT-1 (EAAT2), EAAC1 (EAAT3), EAAT4, and EAAT5 (refs 1-5). GLAST and GLT-1 are localized primarily in astrocytes, whereas EAAC1 (refs 8, 9), EAAT4 (refs 9-11) and EAAT5 (ref 5) are neuronal. Studies of EAAT4 and EAAC1 indicate an extrasynaptic localization on perisynaptic membranes that are near release sites. This localization facilitates rapid glutamate binding, and may have a role in shaping the amplitude of postsynaptic responses in densely packed cerebellar terminals. We have used a yeast two-hybrid screen to identify interacting proteins that may be involved in regulating EAAT4--the glutamate transporter expressed predominately in the cerebellum--or in targeting and/or anchoring or clustering the transporter to the target site. Here we report the identification and characterization of two proteins, GTRAP41 and GTRAP48 (for glutamate transporter EAAT4 associated protein) that specifically interact with the intracellular carboxy-terminal domain of EAAT4 and modulate its glutamate transport activity.  相似文献   

7.
Glutamate is important in several forms of synaptic plasticity such as long-term potentiation, and in neuronal cell degeneration. Glutamate activates several types of receptors, including a metabotropic receptor that is sensitive to trans-1-amino-cyclopenthyl-1,3-dicarboxylate, coupled to G protein(s) and linked to inositol phospholipid metabolism. The activation of the metabotropic receptor in neurons generates inositol 1,4,5-trisphosphate, which causes the release of Ca2+ from intracellular stores and diacylglycerol, which activates protein kinase C. In nerve terminals, the activation of presynaptic protein kinase C with phorbol esters enhances glutamate release. But the presynaptic receptor involved in this protein kinase C-mediated increase in the release of glutamate has not yet been identified. Here we demonstrate the presence of a presynaptic glutamate receptor of the metabotropic type that mediates an enhancement of glutamate exocytosis in cerebrocortical nerve terminals. Interestingly, this potentiation of glutamate release is observed only in the presence of arachidonic acid, which may reflect that this positive feedback control of glutamate exocytosis operates in concert with other pre- or post-synaptic events of the glutamatergic neurotransmission that generate arachidonic acid. This presynaptic glutamate receptor may have a physiological role in the maintenance of long-term potentiation where there is an increase in glutamate release mediated by postsynaptically generated arachidonic acid.  相似文献   

8.
Takamori S  Rhee JS  Rosenmund C  Jahn R 《Nature》2000,407(6801):189-194
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Synaptic vesicles are loaded with neurotransmitter by means of specific vesicular transporters. Here we show that expression of BNPI, a vesicle-bound transporter associated with sodium-dependent phosphate transport, results in glutamate uptake by intracellular vesicles. Substrate specificity and energy dependence are very similar to glutamate uptake by synaptic vesicles. Stimulation of exocytosis--fusion of the vesicles with the cell membrane and release of their contents--resulted in quantal release of glutamate from BNPI-expressing cells. Furthermore, we expressed BNPI in neurons containing GABA (gamma-aminobutyric acid) and maintained them as cultures of single, isolated neurons that form synapses to themselves. After stimulation of these neurons, a component of the postsynaptic current is mediated by glutamate as it is blocked by a combination of the glutamate receptor antagonists, but is insensitive to a GABA(A) receptor antagonist. We conclude that BNPI functions as vesicular glutamate transporter and that expression of BNPI suffices to define a glutamatergic phenotype in neurons.  相似文献   

9.
M Szatkowski  B Barbour  D Attwell 《Nature》1990,348(6300):443-446
Glutamate uptake into nerve and glial cells usually functions to keep the extracellular glutamate concentration low in the central nervous system. But one component of glutamate release from neurons is calcium-independent, suggesting a non-vesicular release that may be due to a reversal of glutamate uptake. The activity of the electrogenic glutamate uptake carrier can be monitored by measuring the membrane current it produces, and uptake is activated by intracellular potassium ions. Here we report that raising the potassium concentration around glial cells evokes an outward current component produced by reversed glutamate uptake. This current is activated by intracellular glutamate and sodium, inhibited by extracellular glutamate and sodium, and increased by membrane depolarization. These results demonstrate a non-vesicular mechanism for the release of glutamate from glial cells and neurons. This mechanism may contribute to the neurotoxic rise in extracellular glutamate concentration during brain anoxia.  相似文献   

10.
Neurotransmitter can modulate neuronal activity through a variety of second messengers that act on ion channels and other substrate proteins. The most commonly described effector mechanism for second messengers in neurons depends on protein phosphorylation mediated by one of three sets of kinases: the cyclic AMP-dependent protein kinases, the Ca2+-calmodulin-dependent protein kinases, and the Ca2+-phospholipid-dependent protein kinases. In addition, some neurotransmitters and second messengers can also inhibit protein phosphorylation by lowering cAMP levels (either by inhibiting adenylyl cyclase or activating phosphodiesterases). This raises the question: can neurotransmitters also modulate neuronal activity by decreasing protein phosphorylation that is independent of cAMP? Various biochemical experiments show that a decrease in protein phosphorylation can arise through activation of a phosphatase or inhibition of kinases. In none of these cases, however, is the physiological role for the decrease in protein phosphorylation known. Here we report that in Aplysia sensory neurons, the presynaptic inhibitory transmitter FMRFamide decreases the resting levels of protein phosphorylation without altering the level of cAMP. Furthermore, FMRFamide overrides the cAMP-mediated enhancement of transmitter release produced by 5-hydroxytryptamine (5-HT), and concomitantly reverses the cAMP-dependent increase in protein phosphorylation produced by 5-HT. These findings indicate that a receptor-mediated decrease in protein phosphorylation may play an important part in the modulation of neurotransmitter release.  相似文献   

11.
L Chen  L Y Huang 《Nature》1992,356(6369):521-523
The roles of N-methyl-D-aspartate (NMDA) receptors and protein kinase C (PKC) are critical in generating and maintaining a variety of sustained neuronal responses. In the nociceptive (pain-sensing) system, tissue injury or repetitive stimulation of small-diameter afferent fibres triggers a dramatic increase in discharge (wind-up) or prolonged depolarization of spinal cord neurons. This central sensitization can neither be induced nor maintained when NMDA receptor channels are blocked. In the trigeminal subnucleus caudalis (a centre for processing nociceptive information from the orofacial areas), a mu-opioid receptor agonist causes a sustained increase in NMDA-activated currents by activating intracellular PKC. There is also evidence that PKC enhances NMDA-receptor-mediated glutamate responses and regulates long-term potentiation of synaptic transmission. Despite the importance of NMDA-receptors and PKC, the mechanism by which PKC alters the NMDA response has remained unclear. Here we examine the actions of intracellularly applied PKC on NMDA-activated currents in isolated trigeminal neurons. We find that PKC potentiates the NMDA response by increasing the probability of channel openings and by reducing the voltage-dependent Mg2+ block of NMDA-receptor channels.  相似文献   

12.
Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to 'OFF' bipolar and 'ON' bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.  相似文献   

13.
An array of rapidly inactivating voltage-gated K+ channels is distributed throughout the nervous systems of vertebrates and invertebrates. Although these channels are thought to regulate the excitability of neurons by attenuating voltage signals, their specific functions are often poorly understood. We studied the role of the prototypical inactivating K+ conductance, Shaker, in Drosophila photoreceptors by recording intracellularly from wild-type and Shaker mutant photoreceptors. Here we show that loss of the Shaker K+ conductance produces a marked reduction in the signal-to-noise ratio of photoreceptors, generating a 50% decrease in the information capacity of these cells in fully light-adapted conditions. By combining experiments with modelling, we show that the inactivation of Shaker K+ channels amplifies voltage signals and enables photoreceptors to use their voltage range more effectively. Loss of the Shaker conductance attenuated the voltage signal and induced a compensatory decrease in impedance. Our results demonstrate the importance of the Shaker K+ conductance for neural coding precision and as a mechanism for selectively amplifying graded signals in neurons, and highlight the effect of compensatory mechanisms on neuronal information processing.  相似文献   

14.
The N-methyl-D-aspartate subtype of glutamate receptor (NMDAR) serves critical functions in physiological and pathological processes in the central nervous system, including neuronal development, plasticity and neurodegeneration. Conventional heteromeric NMDARs composed of NR1 and NR2A-D subunits require dual agonists, glutamate and glycine, for activation. They are also highly permeable to Ca2+, and exhibit voltage-dependent inhibition by Mg2+. Coexpression of NR3A with NR1 and NR2 subunits modulates NMDAR activity. Here we report the cloning and characterization of the final member of the NMDAR family, NR3B, which shares high sequence homology with NR3A. From in situ and immunocytochemical analyses, NR3B is expressed predominantly in motor neurons, whereas NR3A is more widely distributed. Remarkably, when co-expressed in Xenopus oocytes, NR3A or NR3B co-assembles with NR1 to form excitatory glycine receptors that are unaffected by glutamate or NMDA, and inhibited by D-serine, a co-activator of conventional NMDARs. Moreover, NR1/NR3A or -3B receptors form relatively Ca2+-impermeable cation channels that are resistant to Mg2+, MK-801, memantine and competitive antagonists. In cerebrocortical neurons containing NR3 family members, glycine triggers a burst of firing, and membrane patches manifest glycine-responsive single channels that are suppressible by D-serine. By itself, glycine is normally thought of as an inhibitory neurotransmitter. In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor.  相似文献   

15.
A Dumuis  M Sebben  L Haynes  J P Pin  J Bockaert 《Nature》1988,336(6194):68-70
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as well as to Ca2+ (refs 5, 6), have led to the suggestion that these receptors are important in plasticity during development and learning. They have been implicated in long-term potentiation (LTP), a model for the study of the cellular mechanisms of learning. We report here that glutamate and NMDA, acting at typical NMDA receptors, stimulate the release of arachidonic acid (as well as 11- and 12-hydroxyeicosatetraenoic acids from striatal neurons probably by stimulation of a Ca2+-dependent phospholipase A2. Kainate and quisqualate, as well as K+-induced depolarization were ineffective. Our results provide direct evidence in favour of the hypothesis, that arachidonic acid derivatives, produced by activation of the postsynaptic cell, could be messengers that cross the synaptic cleft to modify the presynaptic functions known to be altered during LTP. In addition, we suggest that NMDA receptors are the postsynaptic receptors which trigger the synthesis of these putative transynaptic messengers.  相似文献   

16.
Chen GQ  Cui C  Mayer ML  Gouaux E 《Nature》1999,402(6763):817-821
Ion channels are molecular pores that facilitate the passage of ions across cell membranes and participate in a range of biological processes, from excitatory signal transmission in the mammalian nervous system to the modulation of swimming behaviour in the protozoan Paramecium. Two particularly important families of ion channels are ionotropic glutamate receptors (GluRs) and potassium channels. GluRs are permeable to Na+, K+ and Ca2+, are gated by glutamate, and have previously been found only in eukaryotes. In contrast, potassium channels are selective for K+, are gated by a range of stimuli, and are found in both prokaryotes and eukaryotes. Here we report the discovery and functional characterization of GluR0 from Synechocystis PCC 6803, which is the first GluR found in a prokaryote. GluR0 binds glutamate, forms potassium-selective channels and is related in amino-acid sequence to both eukaryotic GluRs and potassium channels. On the basis of amino-acid sequence and functional relationships between GluR0 and eukaryotic GluRs, we propose that a prokaryotic GluR was the precursor to eukaryotic GluRs. GluR0 provides evidence for the missing link between potassium channels and GluRs, and we suggest that their ion channels have a similar architecture, that GluRs are tetramers and that the gating mechanisms of GluRs and potassium channels have some essential features in common.  相似文献   

17.
Tritsch NX  Yi E  Gale JE  Glowatzki E  Bergles DE 《Nature》2007,450(7166):50-55
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.  相似文献   

18.
Tashiro A  Sandler VM  Toni N  Zhao C  Gage FH 《Nature》2006,442(7105):929-933
New neurons are continuously integrated into existing neural circuits in adult dentate gyrus of the mammalian brain. Accumulating evidence indicates that these new neurons are involved in learning and memory. A substantial fraction of newly born neurons die before they mature and the survival of new neurons is regulated in an experience-dependent manner, raising the possibility that the selective survival or death of new neurons has a direct role in a process of learning and memory--such as information storage--through the information-specific construction of new circuits. However, a critical assumption of this hypothesis is that the survival or death decision of new neurons is information-specific. Because neurons receive their information primarily through their input synaptic activity, we investigated whether the survival of new neurons is regulated by input activity in a cell-specific manner. Here we developed a retrovirus-mediated, single-cell gene knockout technique in mice and showed that the survival of new neurons is competitively regulated by their own NMDA-type glutamate receptor during a short, critical period soon after neuronal birth. This finding indicates that the survival of new neurons and the resulting formation of new circuits are regulated in an input-dependent, cell-specific manner. Therefore, the circuits formed by new neurons may represent information associated with input activity within a short time window in the critical period. This information-specific addition of new circuits through selective survival or death of new neurons may be a unique attribute of new neurons that enables them to play a critical role in learning and memory.  相似文献   

19.
Li Y  Jia YC  Cui K  Li N  Zheng ZY  Wang YZ  Yuan XB 《Nature》2005,434(7035):894-898
Brain-derived neurotrophic factor (BDNF) is known to promote neuronal survival and differentiation and to guide axon extension both in vitro and in vivo. The BDNF-induced chemo-attraction of axonal growth cones requires Ca2+ signalling, but how Ca2+ is regulated by BDNF at the growth cone remains largely unclear. Extracellular application of BDNF triggers membrane currents resembling those through TRPC (transient receptor potential canonical) channels in rat pontine neurons and in Xenopus spinal neurons. Here, we report that in cultured cerebellar granule cells, TRPC channels contribute to the BDNF-induced elevation of Ca2+ at the growth cone and are required for BDNF-induced chemo-attractive turning. Several members of the TRPC family are highly expressed in these neurons, and both Ca2+ elevation and growth-cone turning induced by BDNF are abolished by pharmacological inhibition of TRPC channels, overexpression of a dominant-negative form of TRPC3 or TRPC6, or downregulation of TRPC3 expression via short interfering RNA. Thus, TRPC channel activity is essential for nerve-growth-cone guidance by BDNF.  相似文献   

20.
The glutamate receptor (GluR) channel plays a key part in brain function. Among GluR channel subtypes, the NMDA (N-methyl-D-aspartate) receptor channel which is highly permeable to Ca2+ is essential for the synaptic plasticity underlying memory, learning and development. Furthermore, abnormal activation of the NMDA receptor channel may trigger the neuronal cell death observed in various brain disorders. A complementary DNA encoding a subunit of the rodent NMDA receptor channel (NMDAR1 or zeta 1) has been cloned and its functional properties investigated. Here we report the identification and primary structure of a novel mouse NMDA receptor channel subunit, designated as epsilon 1, after cloning and sequencing the cDNA. The epsilon 1 subunit shows 11-18% amino-acid sequence identity with rodent GluR channel subunits that have been characterized so far and has structural features common to neurotransmitter-gated ion channels. Expression from cloned cDNAs of the epsilon 1 subunit together with the zeta 1 subunit in Xenopus oocytes yields functional GluR channels with high activity and characteristics of the NMDA receptor channel. Furthermore, the heteromeric NMDA receptor channel can be activated by glycine alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号