首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
用放电等离子烧结法(SPS)制备了不同增强相的MoSi2基复合材料,系统研究了第二相对MoSi2基复合材料组织与性能的影响,探讨了MoSi2基复合材料的断裂方式及增韧机制.结果表明:第二相颗粒的加入均能不同程度地提高MoSi2的强韧性;ZrO2对提高断裂韧性最有效.其中20%ZrO2/MoSi2材料达到6.8 Mpam1/2,比纯MoSi2提高了95.4%,表现为微裂纹增韧和弥散强化;β-Si3N4对提高显微硬度、抗压强度最有效,其中20%β-Si3N4/MoSi2分别达到16.01Gpa与2260Mpa,比纯MoSi2提高了31.7%与119.4%,表现为细晶强化;同时加入ZrO2与β-Si3N4能起到相变增韧和细晶强化的协同作用,表现出最佳的强韧性能,其中,10%ZrO2/20%β-Si3N4/MoSi2的维氏硬度、抗压强度、断裂韧性分别比MoSi2提高了24.7%、104.3%、90%.  相似文献   

2.
用放电等离子烧结法(SPS)制备了不同增强相的MoSi2基复合材料,系统研究了第二相对MoSi2基复合材料组织与性能的影响,探讨了MoSi2基复合材料的断裂方式及增韧机制。结果表明:第二相颗粒的加入均能不同程度地提高MoSi2的强韧性;ZrO2对提高断裂韧性最有效,其中20%ZrO2/MoSi2材料达到6.8Mpam,比纯MoSi2提高了95.4%,表现为微裂纹增韧和弥散强化;β-Si3N4对提高显微硬度、抗压强度最有效,其中20%β-Si3N4/MoSi2分别达到16.01Gpa与2260Mpa,比纯MoSi2提高了31.7%与119.4%,表现为细晶强化;同时加入ZrO2与β-Si3N4能起到相变增韧和细晶强化的协同作用,表现出最佳的强韧性能,其中,10%ZrO2/20%β-Si3N4/MoSi2的维氏硬度、抗压强度、断裂韧性分别比MoSi2提高了24.7%、104.3%、90%。  相似文献   

3.
原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能   总被引:4,自引:0,他引:4  
本文研究了原位SiC颗粒增强MoSi2基复合材料的组织结构和力学性能结果表明复合材料的组织为t-MoSi2基体上均匀分布β-SiC等轴颗粒,数量很少的球形小孔隙主要分布在SiC颗粒内,SiC颗粒尺寸为2-5μm.复合材料界面为直接的原子结合,无非晶层存在.复合材料的室温维氏硬度、断裂韧性、抗压强度及高温流变应力明显高于单一MoSi2,随着SiC体积分数的增加,维氏硬度、断裂韧性及高温流变应力提高,而抗压强度先增加后减少SiC体积分数从10%增加到45%,KIC从4.34提高到5.71 MPa  相似文献   

4.
纳米ZrO2颗粒增强MoSi2基复合材料的显微组织和力学性能   总被引:1,自引:0,他引:1  
利用放电等离子烧结法(SPS)制备了MoSi2-ZrO2复合材料,研究了纳米ZrO2颗粒数量对MoSi2基复合材料显微组织和力学性能的影响.结果表明,在MoSi2基体中加入纳米ZrO2颗粒,能细化基体晶粒,改善力学性能;随着ZrO2含量的增加,复合材料的抗压强度随之增加,硬度和断裂韧性先增后减;当ZrO2含量为20%时,室温抗压强度、硬度以及断裂韧度分别为1857 MPa、1235 HV0.5和6.8 MPa·m1/2,与纯MoSi2相比,分别提高102%、19.8%和116%;经500℃氧化300 h后,复合材料氧化后的质量增加量是纯MoSi2的1/10左右.  相似文献   

5.
TiC-TiB2增强MoSi2复合材料的力学性能及抗氧化行为   总被引:4,自引:1,他引:3  
以MoSi2、Ti和B4C粉为原料,采用高温热压技术合成不同体积分数TiC-TiB2增强MoSi2复合材料,研究TiC-TiB2颗粒对MoSi2基体材料显微组织、力学性能和高温氧化性能的影响.结果表明:30%TiC-TiB2/MoSi2(体积分数)复合材料的抗弯强度和维氏硬度分别达到468.3 MPa和17.07 GPa,比纯MoSi2的分别增加了63.2%和83.5%.随着TiC-TiB2体积分数的增加,复合材料的断裂方式由以沿晶断裂为主向以穿晶断裂为主转变,强化机制是细晶强化和弥散强化.在800~1 200 ℃氧化192 h时,30%TiC-TiB2复合材料的增质是10%TiC-TiB2复合材料的2.38~3.23倍.氧化层中没有发现低熔点的B2O3,而TiO2和SiO2的存在使材料具有较好的抗氧化性.  相似文献   

6.
以Si3N4、Al N、Al2O3和c BN粉为原材料,采用放电等离子烧结在不同温度下制备20%c BN/Si Al ON(质量分数)陶瓷复合材料,通过XRD、SEM及力学性能评估等手段研究了材料的物相组成、显微组织、体积密度、硬度以及断裂韧性等性能。结果表明:20%c BN/Si Al ON陶瓷复合材料的最佳烧结温度为1500℃。并考察了用Si O2膜包覆c BN后对该材料力学性能的影响,用包裹后的c BN颗粒制备的c BN(coated)/Si Al ON复合材料,c BN颗粒与Si Al ON基体的界面结合明显改善,且复合材料的体积密度和硬度升高,断裂韧性略微降低。  相似文献   

7.
采用热压烧结法制备了CNTs-Si3N4纳米复相陶瓷,研究了碳纳米管(CNTs)的添加对Si3N4陶瓷组织与力学性能的影响,用XRD分析了该复合材料的相组成,并对它的硬度、抗弯强度和断裂韧性进行了测试.结果表明,CNTs-Si3N4纳米复相陶瓷的相为a-Si3N4、β-Si3N4和Si2N2O;其抗弯强度和断裂韧性均随碳纳米管含量的增加呈先升后降的变化趋势,最大值分别在CNTs添加量为2wt%和4wt%时获得;CNTs添加量为2wt%时,硬度略有提高,然后随碳纳米管含量的继续增加而逐渐降低;CNTs-Si3N4纳米复相陶瓷的主要增韧机制为碳纳米管的拔出、桥联和裂纹偏转.  相似文献   

8.
(SiCp+C)/MoSi2复合材料的组织结构及力学性能   总被引:7,自引:2,他引:5  
通过热压烧结工艺制得了(SiCp+C)/MoSi2复合材料,分析了材料的组织结构、室温和高温力学性能.结果表明(SiCp+C)/MoSi2复合材料主要由MoSi2(大量)、a-SiCp(大量)、Mo5Si3(多量)和β-SiC(少量)组成,密度为5.12g/cm3,相对密度为91%;增强相的粒径<30μm,体积分数为39%.材料室温硬度、抗弯强度和断裂韧性分别为12.2GPa,530MPa和7.2MPa@m1/2;在800℃的维氏硬度为8.0GPa,1200℃和1400℃的抗压强度分别为560MPa和160MPa.与非增强MoSi2相比,材料的各种力学性能都有大幅度的提高.  相似文献   

9.
2%C/MoSi2复合材料的组织结构与性能   总被引:8,自引:1,他引:7  
采用热压烧结工艺制得了2%C/MoSi2(质量分数)复合材料,并测定了材料的显微组织和结构、室温和高温力学性能、耐磨性能以及电阻率。结果:C/MoSi2复合材料由大量的MoSi2、多量的Mo5Si3和少量的β-SiC组成,其硬度Hv为1060,抗弯强度为470MPa,断裂韧性为5.12MPa.m^1/2,800℃的硬度Hv为750,1200℃的抗压强度为450MPa,1400℃的抗压强度为142MPa;在Al2O3和SiC磨盘上表现出优异的耐磨性能,材料的电阻率为349n.m。与纯MoSi2相比,2%C/MoSi2复合材料在硬度、抗弯强度、断裂性、高温抗压强度、弹性模量和耐磨性能等方面都有较大的提高。  相似文献   

10.
原位合成Al2O3颗粒增强双相TiAl基复合材料的组织与性能   总被引:2,自引:1,他引:2  
以Ti-Al-TiO2反应体系为基础,添加不同含量的Nb2O5粉,采用压力协助原位合成Al2O3颗粒增强的双相TiAl基复合材料,对复合材料的组织和力学性能进行了分析讨论,并探讨了其增韧机制。结果表明:Nb2O5的掺杂使复合材料的相对密度和硬度得到提高,抗弯强度和断裂韧性在Nb2O5掺杂量为6%(质量分数)时达到最大,分别为398.38 MPa和6.992 MPa.m1/2。微观组织分析表明,获得了双相组织,Al2O3颗粒分布于基体晶界处;随Nb2O5的掺杂量增大,Al2O3颗粒呈细小弥散分布,同时基体晶粒尺寸也减小。双相基体晶粒的细化及Al2O3颗粒的弥散分布是赋予材料高韧性的主要增韧机制。  相似文献   

11.
采用热压烧结工艺制得了 2 %C/MoSi2 (质量分数 )复合材料 ,并测定了材料的显微组织和结构、室温和高温力学性能、耐磨性能以及电阻率。结果表明 :C/MoSi2 复合材料由大量的MoSi2 、多量的Mo5Si3 和少量的 β SiC组成 ,其硬度Hv为 10 6 0 ,抗弯强度为 470MPa ,断裂韧性为 5 .12MPa·m1/ 2 ,80 0℃的硬度Hv为 75 0 ,12 0 0℃的抗压强度为 45 0MPa ,140 0℃的抗压强度为 142MPa ;在Al2 O3 和SiC磨盘上表现出优异的耐磨性能 ,材料的电阻率为 34 9nΩ·m。与纯MoSi2 相比 ,2 %C/MoSi2 复合材料在硬度、抗弯强度、断裂韧性、高温抗压强度、弹性模量和耐磨性能等方面都有较大的提高。  相似文献   

12.
ZrO2+SiC颗粒强韧化MoSi2复合材料的显微组织和性能   总被引:1,自引:0,他引:1  
《材料热处理学报》2000,21(4):18-22
通过显微组织观察和力学性能测试,初步探讨了ZrO2+SiC颗粒对MoSi2基体材料的强韧化效果和机制.结果表明,材料复合具有较好的强韧化协同效应,复合材料中ZrO2相和少量SiC颗粒在基体的间层作用,可抑制MoSi2晶粒长大;断口呈现晶粒细小、裂纹扩展曲折和沿晶与穿晶混合型断裂等特征;ZrO2+SiC颗粒通过弥散强化和细化晶粒使复合材料强度提高,通过晶粒细化、裂纹偏转和分支、微裂纹形成等机制的综合作用使复合材料增韧.  相似文献   

13.
以高能球磨法制备的WC-MgO复合粉末为原料,研究稀土氧化物(La2O3)添加量对WC-MgO复合粉末热压烧结块体的组织和力学性能的影响,采用XRD、SEM和SPM对复合材料的结构特征进行表征,并讨论稀土氧化物(La2O3)对颗粒增韧复合材料热压烧结成形的影响。结果表明:La2O3的加入量为0.1%(质量分数),可抑制烧结过程中出现的脱碳现象、细化烧结组织,提高增韧颗粒分散均匀性和改善颗粒/基体界面形貌,使成形致密度达理论密度的98.56%,维氏硬度和断裂韧性分别为18.02GPa与12.38MPa·m1/2;而添加过量La2O3(≥0.25%,质量分数),导致复合材料的成形性能降低。  相似文献   

14.
(SiC_p C)/MoSi_2复合材料的组织结构及力学性能   总被引:1,自引:0,他引:1  
通过热压烧结工艺制得了 (SiCp C) /MoSi2 复合材料 ,分析了材料的组织结构、室温和高温力学性能。结果表明 :(SiCp C) /MoSi2 复合材料主要由MoSi2 (大量 )、α SiCp(大量 )、Mo5Si3(多量 )和 β SiC(少量 )组成 ,密度为 5 .12g/cm3,相对密度为 91% ;增强相的粒径 <3 0 μm ,体积分数为 3 9%。材料室温硬度、抗弯强度和断裂韧性分别为 12 .2GPa ,5 3 0MPa和 7.2MPa·m1/ 2 ;在 80 0℃的维氏硬度为 8.0GPa ,12 0 0℃和 14 0 0℃的抗压强度分别为 5 60MPa和 160MPa。与非增强MoSi2 相比 ,材料的各种力学性能都有大幅度的提高  相似文献   

15.
ZrO2+SiC颗粒强韧化MoSi2复合材料的显微组织和性能   总被引:1,自引:0,他引:1  
通过显微组织观察和力学性能测试 ,初步探讨了ZrO2 SiC颗粒对MoSi2 基体材料的强韧化效果和机制。结果表明 ,材料复合具有较好的强韧化协同效应 ,复合材料中ZrO2 相和少量SiC颗粒在基体的间层作用 ,可抑制MoSi2 晶粒长大 ;断口呈现晶粒细小、裂纹扩展曲折和沿晶与穿晶混合型断裂等特征 ;ZrO2 SiC颗粒通过弥散强化和细化晶粒使复合材料强度提高 ,通过晶粒细化、裂纹偏转和分支、微裂纹形成等机制的综合作用使复合材料增韧  相似文献   

16.
采用压力浸渗法制备Si3N4体积分数分别为45%、50%和55%的颗粒增强铝基复合材料(Si3N4/Al)。研究Si3N4体积分数和T6热处理对Si3N4/Al复合材料微观组织和力学性能的影响。结果表明:Si3N4颗粒分散均匀,Si3N4/Al复合材料浸渗良好,没有明显的孔洞和铸造缺陷;在Si3N4颗粒附近的铝基体中,可以观察到高密度位错;Si3N4/Al复合材料的弯曲强度随着Si3N4体积分数的增大而降低;T6热处理能提高复合材料的强度;复合材料的弹性模量随着Si3N4体积分数的增加而线性增加;在低Si3N4体积分数时,可以观察到更多的撕裂棱和韧窝;T6热处理对断口形貌的影响较小。  相似文献   

17.
在烧结温度和压力为1800 ℃和30 MPa条件下热压烧结制备ZrB2-20%(体积分数, 下同)SiCw陶瓷复合材料,并研究两种不同SiC晶须对材料的显微组织与力学性能的影响.结果表明,复合材料的弯曲强度和断裂韧性与SiC晶须的长径比有关,长径比越大材料的性能越好,弯曲强度和断裂韧性最高为651 MPa和5.97 MPa·m1/2;与单相的ZrB2材料及SiC颗粒增强ZrB2复合材料相比,断裂韧性有显著提高;其主要增韧机制为裂纹偏转、晶须桥连和拔出.  相似文献   

18.
采用熔铸法制备了Al3Tip体积分数分别为4%和8%的AZ91D复合材料,研究了其显微组织和物相,测试了其致密度、硬度及磨损性能。结果表明,复合材料组织致密,原位内生的Al3Ti颗粒尺寸细小,呈球形且在基体中分布较均匀,与基体结合紧密;随Al3Ti体积分数的增加复合材料的致密度降低,硬度升高,但其耐磨性反而有所降低。与基体AZ91D合金相比,Al3Tip/AZ91D基复合材料的硬度和耐磨性均得到明显提高。  相似文献   

19.
以B4C,TiO2和石墨粉为原料,采用原位反应热压烧结工艺(2050℃,35MPa,1h)制备了致密的TiB2含量为10%~40%(体积分数)的TiB2/B4C复合材料,并对复合材料的组织结构和力学性能进行了研究。扫描电子显微镜和透射电子显微镜分析结果表明:在B4C晶内及晶界处均匀分布着纳米或亚微米级的TiB2颗粒,随着TiB2含量的增加,弹性模量和断裂韧性明显增大,而弹性模量和抗弯强度却随之减小。40%(体积分数)TiB2/B4C复合材料具有高的断裂韧性,高达8.2MPam1/2,主要增韧机制由微裂纹增韧和裂纹偏转增韧。  相似文献   

20.
采用压力浸渗制备了体积分数为51.5%的SiCp/Mg-6Al-0.5Mn镁基复合材料.通过力学性能测试与组织观察,研究了高体积分数SiC颗粒增强体对基体合金的显微组织与力学性能的影响.结果显示,在Mg-6Al-0.5Mn基体合金中加入体积分数为51.5%的SiC颗粒后,复合材料的压缩性能得到了大幅度的提高,室温下的抗压缩强度从329.5 MPa增大到624.8 MPa.SiCp/Mg-6Al-0.5Mn复合材料的组织致密,分布均匀,其断裂方式包括界面脱开、基体韧断和增强体开裂.SiC颗粒与基体之间发生了界面反应,生成了纳米级的Mg2Si化合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号