首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract –  Relationships between fish length, otolith size, age and weight were assessed for a population of wild Australian smelt ( Retropinna semoni ) larvae and juveniles captured over a 4-year period to aid further interpretation of growth and condition during the early life history of the species. Nonlinear smoothed generalized additive models best described the fish–otolith size relationship during the larval and juvenile period, indicating that the proportionality between fish length and otolith size varies in relation to size. It is proposed that back-calculated predictions of fish size at a previous age or otolith size, accounting for individual variation is possible by assuming a body proportional hypothesis. Growth rate of larval and juvenile Australian smelt was best described using the Gompertz model that indicated a steady decline in growth rate after around 30 days of age. The allometric growth of larval and juvenile Australian smelt established from the length/weight relationship can subsequently be used to assess the condition of fish within this population using a relative condition or relative weight condition index. The results of the study have provided significant information to enable more precise growth reconstruction and condition assessment for the species in Australian lowland rivers.  相似文献   

2.
In this paper, we highlight the major results from the SABRE programme and applications to research and management. In particular, SABRE provided new scientific insights into the fisheries oceanography of the estuarine-dependent fishes of the South Atlantic Bight. Although we concentrated our efforts on Atlantic menhaden, we also gained insights on the coupling of physics to biology in the early life history of a number of marine fishes. Larval transport from spawning sites to and through barrier island inlets is now better understood. Analysis of menhaden population dynamics suggests survival in the late larval/early juvenile stage is particularly important to population growth. This phase of the life history appears likely to present a bottleneck to recruitment for Atlantic menhaden. We also made a number of technological breakthroughs which are already being applied elsewhere in research and assessments including the Continuous, Underway Egg Sampler (CUFES), enzyme-based approaches to evaluating condition of individual larvae and various physical and biological modelling innovations. Our experiences establishing and managing the SABRE research team also provide insights into one model for promoting multidisciplinary research in fisheries oceanography. Throughout SABRE, we have sought an open exchange of information and insights from a wide variety of researchers and environmental managers. We hope the synthesis provided here continues that dialogue.  相似文献   

3.
Identifying factors that affect larval mortality is critical for understanding the drivers of fish population dynamics. Although larval fish mortality is high, small changes in mortality rates can lead to large changes in recruitment. Recent studies suggest maternal provisioning can dramatically affect the susceptibility of larvae to starvation and predation, the major sources of early-life mortality. We measured otolith core width-at-extrusion and validated that this is a proxy for larval size-at-extrusion for eight species of rockfishes (genus Sebastes) to examine the influence of initial larval size on larval growth and survival and to understand how oceanographic conditions experienced by gestating females affect larval size (i.e., quality). Otolith core width-at-extrusion was significantly positively related to larval rockfish recent growth rate (5/7 species with sufficient sample size) and survival (all eight species). This suggests that individuals that are larger at extrusion generally grow faster and are more likely to survive early life stages. Otolith core width-at-extrusion was positively related to higher presence of Pacific Subarctic Upper Water and was negatively related to warmer, saline waters at the depths gestating mothers inhabited during the months prior to larval collection. In addition, otolith core width was larger further from fishing ports, possibly because these locations were historically less fished, contained more older, larger females, and/or had inherently better habitat quality (higher Pacific Subarctic Upper Water) than sites closer to shore. These results indicate that the environmental conditions female rockfish experience during gestation drive the size of the larvae they produce and impact larval growth and survival.  相似文献   

4.
Temperature and body size are widely agreed to be the primary factors influencing vital rates (e.g., growth, mortality) in marine fishes. We created a biophysical individual‐based model which included the effects of body size and temperature on development, growth and mortality rates of eggs, larvae and juveniles of Atlantic cod (Gadus morhua L.) in the North Sea. Temperature‐dependent mortality rates in our model were based on the consumption rate of predators of cod early‐life stages. The model predicted 35%, 53% and 12% of the total mortality to occur during the egg, larval and juvenile stages, respectively. A comparison of modeled and observed body size suggested that the growth of survivors through their first year of life is high and close to the growth rates in ad libitum feeding laboratory experiments. Furthermore, our model indicates that experiencing warmer temperatures during early life only benefits young cod (or theoretically any organism) if a high ratio exists between the temperature coefficients for the rate of growth and the rate of mortality. During the egg stage of cod, any benefit of developing more rapidly at warmer temperatures is largely counteracted by temperature‐dependent increases in predation pressure. In contrast, juvenile (age‐0) cod experiences a higher cumulative mortality at warmer temperatures in the North Sea. Thus, our study adds a new aspect to the ‘growth–survival’ hypothesis: faster growth is not always profitable for early‐life stages particularly if it is caused by warmer temperatures.  相似文献   

5.
Interannual variability in growth of larval walleye pollock Theragra chalcogramma was examined from 1983 to 1991 and of juveniles from 1985 to 1990. ANCOVA was used to assess differences in population growth rates, and an alternate method was developed to examine variations between annual length-at-age data and average 'expected' values over different age groupings. For larvae, the years 1986, 1987, 1989 and 1990 had higher than average length-at-age, and 1988 and 1991 had lower than average values. Relationships between growth and SST and larval density were not clear. A tentative relationship between copepod nauplii abundance and larval length-at-age was noted. The consequence of larval growth to larval mortality, late larval abundance or recruitment was not clear. We conclude that larval mortality rates are highly variable and tend to mask effects of moderate variability in growth on later abundance. For juveniles, 1987 had significantly lower than average length-at-age and 1988 had higher than average values. Although there are few years of data, they tend to support the importance of juvenile growth in the recruitment process. Conditions for the large 1988 year class are documented and discussed, including warm SST, calm winds, relatively low larval growth rates, low abundances of potential predators on larvae, low larval mortality rates, and high juvenile growth rates.  相似文献   

6.
Present theory suggests that population regulation in marine fishes cannot be resolved until an understanding of the processes involved in shaping the overall distribution (the number of populations, geographical extent, mean abundance and temporal changes in abundance) is developed. Here, we present a step toward understanding Atlantic menhaden population patterns, by studying processes in the Middle and South Atlantic Bights, which shape those patterns. We use individual-based and hydrodynamic models to reinterpret the 'mechanics' of the menhaden life history, and put forward several potentially testable hypotheses. The success of the menhaden reproductive strategy seems to depend on the seasonal changes in the mean flow field of the Middle and South Atlantic Bights, suggesting that their life history may have been strongly structured by the regional physics of the system. Because the annual menhaden migration is size-based and spawning occurs throughout the population's range, the size distribution of the adult population may influence the supply of larvae to particular estuaries along the coast. Recruitment of larvae into Delaware and Chesapeake Bays may be dependent on spawning to the north of the bays' mouths, owing to coastline shape and orientation in the vicinity of the bays. Our results suggest that management of this resource might be improved by consideration of the spatial and temporal variability in both the biological and the physical system.  相似文献   

7.
The daily mortality rates of North Sea herring early‐stage larvae are found to vary over decades. Larval abundance data were used with a spatio‐temporal oceanographic model to reconstruct temperature histories of the observed larvae. The histories were used in conjunction with a temperature‐based growth model to estimate larval age. Mean daily mortality rates were then estimated for the four spawning components (Downs, Banks, Buchan and Orkney/Shetland) using the vertical life table approach, which considers instantaneous abundances across all ages rather than following distinct cohorts. All spawning components, but especially Downs (in the south), exhibited a steady rise in mortality associated with increasing population size. In addition, the three northern components shared a distinct trend in mortality that was significantly correlated with ambient water temperatures experienced by the larvae during the respective time periods after hatching. This trend was also significantly negatively correlated with the residuals of the whole stock‐recruitment relationship. These findings were generally robust to assumptions about growth and hatch length of larvae. The compensatory increase in productivity in the late 1980s and poor recruitment since 2000 coincide with changes in the mortality of larvae younger than 30 days post hatch and covary with larval density and temperature. Thus we suggest that the mortality of early‐stage larvae does impact on the population dynamics in North Sea herring in its current productivity regime, implying a critical period in the determination of year class strength.  相似文献   

8.
A biochemically based model was developed to simulate the growth, development and metamorphosis of larvae of the Pacific oyster, Crassostrea gigas. The model is unique in that it (1) defines larvae in terms of their protein, neutral lipid, polar lipid, carbohydrate and ash content; (2) tracks weight separately from length to follow larval condition index and (3) includes genetic variation in growth efficiency and egg quality to better simulate cohort population dynamics. The model includes parameterizations for larval filtration, ingestion and respiration that determine growth rate and processes controlling larval mortality and metamorphosis. Changes in tissue composition occur as the larva grows and in response to the biochemical composition of the food.

The simulations show that genetically determined variations in growth efficiency produce significant changes in larval survival and success at metamorphosis. Larvae with low growth efficiency are successful under a much narrower range of culture conditions than larvae with high growth efficiency. The impact of low growth efficiency is primarily controlled by the ability of larvae to store lipid for metamorphosis. Culture conditions that provide increased dietary lipid counterweigh low growth efficiency. Changes in food quantity and quality had little effect on size at metamorphosis. On the other hand, larval life span and success rate at metamorphosis varied over a wide range depending upon the conditions of the simulation. Food quality and food availability both influence larval life span and, hence, larval survival. As ingestion rate decreases, larval life span increases and cohort survival declines. Increased lipid or decreased protein in the diet improves cohort survival. Changes in carbohydrate content are less influential. If cohort success is significantly affected by mortality during larval life rather than success at metamorphosis, the influence of food quality becomes more complex. The range of food compositions yielding high survival is restricted by a balance between improved success at metamorphosis obtained by increased lipid storage and the shortening of larval life span as a result of more rapid growth, a function of protein availability. These simulations illustrate the strength and utility of numerical models for evaluating and designing hatchery protocols for optimizing yield of C. gigas larvae.  相似文献   


9.
Early life stages of fish (eggs and larvae) are particularly vulnerable with mortality rates of up to 99% recorded for a large number of species. High mortality rates result from the limited swimming ability of larvae preventing them from escaping sub-optimal environmental conditions, predators or low prey density areas. In this context, estuaries are key nursery areas for larval and juvenile fish. Estuarine habitats offer environmental conditions favourable to the survival and growth of early stages, through abundant good-quality prey and protection from predators. A vast literature on larvae occurring in temperate estuaries exists, but an overall perspective is lacking. The occurrence of fish larvae in temperate estuaries depends on several factors. First, the choice of spawning time and location is primordial, as they have evolved to optimise the entry and the retention of larvae in the estuary as well as the conditions experienced by young stages. Secondly, larval growth and survival depend on key environmental factors (e.g. salinity, water temperature, freshwater inputs, turbidity and dissolved oxygen concentration). Knowledge of the larval dynamics in temperate estuaries is scarce for some topics and biased towards some species or geographical areas. The main goal of the present literature review is to synthesise existing knowledge regarding spawning timing and location and larval ecology for fish species occurring in coasts and estuaries, identifying the main patterns, consensus or conflicting hypotheses and highlighting major gaps. Research needs and future perspectives were outlined.  相似文献   

10.
大黄鱼仔稚鱼不同发育阶段矢耳石形态发育和微结构特征   总被引:2,自引:0,他引:2  
对人工培育大黄鱼(Larimichthys crocea)的生长发育与矢耳石形态及微结构特征进行研究,结果表明:(1)大黄鱼矢耳石上的轮纹是每日形成的,第1日轮在孵化后第2天形成,与其初次摄食相对应。(2)大黄鱼卵黄囊期和前弯曲期仔鱼的耳石形态为圆形,进入弯曲期耳石长轴迅速伸长,在后弯曲期耳石形态变为椭圆形。进入稚鱼期,矢耳石开始形成次生核。随后次生核数量逐渐增加,在孵化后47~78 d的个体中,次生核数量稳定在5~7个,耳石近似盾形。(3)根据耳石日轮宽度推算的大黄鱼稚鱼在其仔鱼期生长率(b)与第1个次生核的形成时间(tsp1)之间存在明显的线性关系,表明生长较快的个体形成次生核的时间较早,进入稚鱼期所需的时间更短。以上结论表明,大黄鱼矢耳石可以反演其早期生活史阶段的生长发育特征。  相似文献   

11.
Early life survival is critical to successful replenishment of fish populations, and hypotheses developed under the Growth-Survival Paradigm (GSP) have guided investigations of controlling processes. The GSP postulates that recruitment depends on growth and mortality rates during early life stages, as well as their duration, after which the mortality declines substantially. The GSP predicts a shift in the frequency distribution of growth histories with age towards faster growth rates relative to the initial population because slow-growing individuals are subject to high mortality (via starvation and predation). However, mortality data compiled from 387 cases published in 153 studies (1971–2022) showed that the GSP was only supported in 56% of cases. Selection against slow growth occurred in two-thirds of field studies, leaving a non-negligible fraction of cases showing either an absence of or inverse growth-selective survival, suggesting the growth-survival relationship is more complex than currently considered within the GSP framework. Stochastic simulations allowed us to assess the influence of key intrinsic and extrinsic factors on the characteristics of surviving larvae and identify knowledge gaps on the drivers of variability in growth-selective survival. We suggest caution when interpreting patterns of growth selection because changes in variance and autocorrelation of individual growth rates among cohorts can invalidate fundamental GSP assumptions. We argue that breakthroughs in recruitment research require a comprehensive, population-specific characterization of the role of predation and intrinsic factors in driving variability in the distribution and autocorrelation of larval growth rates, and of the life stage corresponding to the endpoint of pre-recruited life.  相似文献   

12.
To explore which lifestages affect the stock size of young-of-the-year mantis shrimp Oratosquilla oratoria in Tokyo Bay, Japan, we investigated interannual variations in the quantitative relationships among egg production, larval density, and juvenile density. We collected adult females, larvae, and juveniles during monthly field surveys from 2004 to 2007. The interannual trend for the juvenile density index differed from those for egg production and larval density; although indices of both egg production and larval density were high in 2004 and 2007, the juvenile density index was high only in 2007, suggesting high mortality during the pelagic larval stage or the early phase of the postsettlement juvenile stage in 2004. We found that larval settlement started at the end of August and peaked in October, although larvae from the early spawning season (May–June) should have settled in August or earlier. Juveniles were found throughout the bay except in areas where bottom hypoxia occurred, suggesting that hypoxia restricts the spatial distribution of juveniles. Our results suggest that mortality during the early life history fluctuates among years, probably because of changes in environmental conditions in the bay, resulting in interannual variation in the stock size of young-of-the-year juvenile O. oratoria.  相似文献   

13.
A series of age-specific life tables for walleye pollock ( Theragra chalcogramma ) in the western Gulf of Alaska was compiled for the 1980-91 year classes. The life tables were utilized to perform an exploratory key factor analysis to examine the timing of critical periods in the recruitment process, evidence of density-dependence at different stages and trends in mortality rates. Early larval mortality was significantly correlated with generational mortality (In recruits/spawning bio-mass), but patterns in juvenile mortality also were similar to generational mortality and in some years were clearly dominant in determining the fate of a cohort. Density-dependent mortality, based on the correlation between mortality and initial abundance, was indicated only for the late larval to early juvenile stage. Time trends were marginally significant for juvenile mortality. It is speculated that the observed increase in juvenile mortality is associated with increasing abundance of arrowtooth flounder. Weaknesses in the data base are discussed; these along with the short time series involved make our conclusions tentative and subject to further study. We hypothesize that pollock recruitment levels can be established at any life stage depending on sufficient supply from prior stages, a type of dynamics which can be termed supply dependent multiple life stage control.  相似文献   

14.
采用MiSeq 16S rRNA高通量测序技术和生物信息学分析方法,构建了牙鲆(Paralichthys olivaceus)工厂化人工育苗模式下仔稚幼鱼阶段6个不同发育时期18个样品的16SrRNA基因测序文库,共获得7462个OTU (Operational Taxonomic Unit),分类为42个菌门972个菌属.对肠道菌群的形成过程及结构多样性变化分析显示,牙鲆初孵仔鱼的菌群组成多样性丰富,体内的优势菌为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes);在9日龄和21日龄摄食轮虫(Rotifer)和卤虫(Artemia sp.)幼体样品中,肠道的优势菌群结构较单一,变形菌门成为此时期肠道的优势菌群;45日龄摄食配合饲料后,肠道中变形菌门的相对丰度显著降低,厚壁菌门和拟杆菌门的相对丰度明显增大,成为肠道菌群的优势菌群.在属水平的菌群结构中发现,牙鲆仔稚幼鱼肠道优势菌群的种类和数量都发生了较大变化,在9日龄和21日龄时期肠道中弧菌属(Vibrio)相对丰度最高,到45日龄后相对丰度锐减到最低水平;拟杆菌属(Bacteroides)和普氏菌属(Prevotella)在80日龄后达到较高水平,成为肠道优势菌属;厚壁菌门的8个菌属在80-115日龄时期均发展成为优势菌属,定植于牙鲆的肠道.本研究揭示了工厂化人工育苗模式下牙鲆仔稚幼鱼肠道菌群结构及演替规律.  相似文献   

15.
Variability in the high mortality rate during early life stages is considered to be one of the principal determinants of year‐class variability in fish stocks. The influence of water column stability on the spatial distribution of fish larvae and their prey is widely acknowledged. Water column stability may also impact growth through the early life history of fishes, and consequently alter the probability of survival to maturity by limiting susceptibility to predation and starvation. As a test of this concept, the variability in condition and growth of dab (Limanda limanda) and sprat (Sprattus sprattus) larvae was investigated in relation to seasonal stratification of the water column in the north‐western Irish Sea. RNA/DNA ratios and otolith microincrement analysis were used to estimate nutritional status and recent growth rates of larvae captured on four cruises in May and June of 1998 and 1999. Dab and sprat larvae were less abundant in 1999 and were in poorer condition with lower growth rates than in 1998. Dab larvae of <13 mm also exhibited spatial variability with higher RNA/DNA ratios at the seasonal tidal‐mixing front compared with stratified and mixed water masses. However, the growth and nutritional status of sprat larvae was uncorrelated to water column stability, meaning the more favourable feeding conditions generally associated with the stratified pool and tidal‐mixing front in the Irish Sea were not reflected in the growth and condition of these larvae. This suggests that the link between stability, production and larval growth is more complicated than inferred by some previous studies. The existence of spatio‐temporal heterogeneity in the growth and condition of these larvae has implications for larval survival and the recruitment success of these species in the Irish Sea.  相似文献   

16.
We apply a coupled biophysical model to reconstruct the environmental history of larval radiated shanny in Conception Bay, Newfoundland. Data on the larvae, their prey and predators were collected during a 2‐week period. Our goal was to determine whether environmentally explicit information could be used to infer the characteristics of individual larvae that are most likely to survive. Backward drift reconstruction was used to assess the influence of variations in the feeding environment on changes in the growth rates of individual larvae. Forward drift projections were used to assess the impact of predators on mortality rates as well as the cumulative density distribution of growth rates in the population of larvae in different areas of the bay. There was relatively little influence of current feeding conditions on increment widths. Patterns of selective mortality indicate that fast‐growing individuals suffered higher mortality rates, suggesting they were growing into a predator's prey field. However, the mortality rates appeared to increase with decreasing predator abundance, based on the drift reconstructions. The relationship of growth and mortality with environmental conditions suggests that short‐term, small‐scale variations in environmental history may be difficult to describe accurately in this relatively small system (~1000 km2).  相似文献   

17.
Pacific herring were susceptible to waterborne challenge with viral haemorrhagic septicaemia virus (VHSV) throughout their early life history stages, with significantly greater cumulative mortalities occurring among VHSV‐exposed groups of 9‐, 44‐, 54‐ and 76‐day‐old larvae than among respective control groups. Similarly, among 89‐day–1‐year‐old and 1+year old post‐metamorphosed juveniles, cumulative mortality was significantly greater in VHSV‐challenged groups than in respective control groups. Larval exposure to VHSV conferred partial protection to the survivors after their metamorphosis to juveniles as shown by significantly less cumulative mortalities among juvenile groups that survived a VHS epidemic as larvae than among groups that were previously naïve to VHSV. Magnitude of the protection, measured as relative per cent survival, was a direct function of larval age at first exposure and was probably a reflection of gradual developmental onset of immunocompetence. These results indicate the potential for easily overlooked VHS epizootics among wild larvae in regions where the virus is endemic and emphasize the importance of early life history stages of marine fish in influencing the ecological disease processes.  相似文献   

18.
Based on existing models of fish vision and turbulence-mediated ingestion rates, we develop a model of ingestion rates in larval fish that combines several physical properties of the environment (turbulence, irradiance, light attenuation) and visual characteristics of predators and prey. The model of visual range was calibrated with observed estimates in larval herring ( Clupea harengus ) and cod ( Gadus morhua ). The improved visual ability with length of larvae was predicted to be the most sensitive part of the model. Both turbulence and light had strong impacts on the ingestion rate of larval fish. The optimal level of turbulence increased with larval length. Also, due to the exponential decay of light with depth, it was predicted that larvae will have higher ingestion rates near the surface, even at high wind velocities. It is also proposed that larvae (particularly the smallest larvae) should concentrate on larger prey in turbulent environments. We suggest that biophysical models of larval growth and survival in field situations should include these factors to account for environmental effects on growth, survival and recruitment processes in the early life stages.  相似文献   

19.
Fish eggs and larvae are often subject to very high mortality, and variation in early life survival can be important for population dynamics. Although longnose suckers (Catostomus catostomus) are widespread in northern North America, little is known about their early life history. We examined fecundity and early larval survivorship during sucker spawning events in three small Lake Michigan tributaries. Although egg deposition varied 25% among spawning events, estimated larval export to the lake varied over 25,000‐fold from around 1000 to 26 million. Based on variation in environmental conditions across years, it appears that spring flow and temperature may be important determinants of egg survival to larval outmigration. Larval age data suggest that most individuals that survived to outmigration hatched during a 2‐day period despite adult spawning across at least 10 days. Most larvae spent <2 weeks in the stream and emigrated around the time of transition from endogenous to exogenous feeding before substantial growth occurred. In two of three cases, larvae drifted exclusively at night; however, high drift rates occurred during both day and night in the case where larvae were very abundant, suggesting density‐dependent drift behaviour. Our results indicate that survival in tributary streams from egg deposition to larval export is highly variable in longnose suckers. These large differences in early life survival may translate into variability in recruitment, thereby influencing population structure and dynamics.  相似文献   

20.
Three concepts based on size, time and growth rate are contained in the functional mechanisms of the ‘growth–mortality’ hypothesis, and are known as the ‘bigger is better’, ‘stage duration’ and ‘growth-selective predation’ hypotheses, respectively. Although it is sufficiently documented in fishes that faster growing and bigger larvae selectively survive, synergistic operation of the three components of the ‘growth–mortality’ hypothesis within a species have received little attention. In this study, we have tested the components of the ‘growth–mortality’ hypothesis based on the growth characteristics of original population (OP) and survivors (SV) of Japanese seabass (JSB) Lateolabrax japonicus. Larval and juvenile JSB were repeatedly sampled from the Tango Sea in 2007 and 2008. Otoliths from larvae and juveniles were analyzed to produce back-calculated daily records of size-at-age and growth rate, and were compared between OP and SV. Selective survival for fast-growing and bigger larvae was evident, and our results strongly support the ‘bigger is better’ hypothesis as well as the ‘growth-selective predation’ hypothesis. Growth rates of the individuals that metamorphosed into juveniles had significantly faster growth rates than non-metamorphosing larvae older than 48 days, the minimum age for metamorphosis, suggesting a clear relationship between growth rates and the timing of metamorphosis. On average, SV completed the larval stage ∼13 days earlier than those of OP, supporting the ‘stage duration’ hypothesis. Thus, SV of JSB exhibited traits consistent with all aspects of the ‘growth–mortality’ hypothesis: faster growth, bigger size-at-age, and shorter larval stage duration (LSD), i.e., larvae with faster growth, bigger size-at-age and a shorter LSD selectively survived the larval period. Although maternal influence on growth and survival was evident, factors that regulate growth–mortality mechanisms remain to be explored for JSB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号