首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

Expression Quantitative Trait Locus (eQTL) mapping methods have been used to identify the genetic basis of gene expression variations. To map eQTL, thousands of expression profiles are related with sequence polymorphisms across the genome through their correlated variations. These eQTL distribute in many chromosomal regions, each of which can include many genes. The large number of mapping results produced makes it difficult to consider simultaneously the relationships between multiple genomic regions and multiple expressional profiles. There is a need for informative bioinformatics tools to assist the visualization and interpretation of these mapping results.  相似文献   

2.

Background  

Modeling of cis-elements or regulatory motifs in promoter (upstream) regions of genes is a challenging computational problem. In this work, set of regulatory motifs simultaneously present in the promoters of a set of genes is modeled as a biclique in a suitably defined bipartite graph. A biologically meaningful co-occurrence of multiple cis-elements in a gene promoter is assessed by the combined analysis of genomic and gene expression data. Greater statistical significance is associated with a set of genes that shares a common set of regulatory motifs, while simultaneously exhibiting highly correlated gene expression under given experimental conditions.  相似文献   

3.

Background  

Many researchers are concerned with the comparability and reliability of microarray gene expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a unique opportunity to assess reproducibility across multiple sites and the comparability across multiple platforms. The MAQC analysis presented for the conclusion of inter- and intra-platform comparability/reproducibility of microarray gene expression measurements is inadequate. We evaluate the reproducibility/comparability of the MAQC data for 12901 common genes in four titration samples generated from five high-density one-color microarray platforms and the TaqMan technology. We discuss some of the problems with the use of correlation coefficient as metric to evaluate the inter- and intra-platform reproducibility and the percent of overlapping genes (POG) as a measure for evaluation of a gene selection procedure by MAQC.  相似文献   

4.

Background  

The small sample sizes often used for microarray experiments result in poor estimates of variance if each gene is considered independently. Yet accurately estimating variability of gene expression measurements in microarray experiments is essential for correctly identifying differentially expressed genes. Several recently developed methods for testing differential expression of genes utilize hierarchical Bayesian models to "pool" information from multiple genes. We have developed a statistical testing procedure that further improves upon current methods by incorporating the well-documented relationship between the absolute gene expression level and the variance of gene expression measurements into the general empirical Bayes framework.  相似文献   

5.

Background  

Control genes, which are often referred to as housekeeping genes, are frequently used to normalise mRNA levels between different samples. However, the expression level of these genes may vary among tissues or cells and may change under certain circumstances. Thus, the selection of housekeeping genes is critical for gene expression studies. To address this issue, 7 candidate housekeeping genes including several commonly used ones were investigated in isolated human reticulocytes. For this, a simple ΔCt approach was employed by comparing relative expression of 'pairs of genes' within each sample. On this basis, stability of the candidate housekeeping genes was ranked according to repeatability of the gene expression differences among 31 samples.  相似文献   

6.

Background

The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates.

Methodology/Principal Findings

We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates.

Conclusions

The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.  相似文献   

7.

Background  

Relatively few studies have used cell culture systems to investigate gene expression and the regulation of myogenesis in fish. To produce robust data from quantitative real-time PCR mRNA levels need to be normalised using internal reference genes which have stable expression across all experimental samples. We have investigated the expression of eight candidate genes to identify suitable reference genes for use in primary myogenic cell cultures from Atlantic salmon (Salmo salar L.). The software analysis packages geNorm, Normfinder and Best keeper were used to rank genes according to their stability across 42 samples during the course of myogenic differentiation.  相似文献   

8.
9.
10.
11.

Background  

Accurate and automatic gene finding and structural prediction is a common problem in bioinformatics, and applications need to be capable of handling non-canonical splice sites, micro-exons and partial gene structure predictions that span across several genomic clones.  相似文献   

12.

Background

Gene order in eukaryotic genomes is not random. Genes showing similar expression (coexpression) patterns are often clustered along the genome. The goal of this study is to characterize coexpression clustering in mammalian genomes and to investigate the underlying mechanisms.

Methodology/Principal Findings

We detect clustering of coexpressed genes across multiple scales, from neighboring genes to chromosomal domains that span tens of megabases and, in some cases, entire chromosomes. Coexpression domains may be positively or negatively correlated with other domains, within and between chromosomes. We find that long-range expression domains are associated with gene density, which in turn is related to physical organization of the chromosomes within the nucleus. We show that gene expression changes between healthy and diseased tissue samples occur in a gene density-dependent manner.

Conclusions/Significance

We demonstrate that coexpression domains exist across multiple scales. We identify potential mechanisms for short-range as well as long-range coexpression domains. We provide evidence that the three-dimensional architecture of the chromosomes may underlie long-range coexpression domains. Chromosome territory reorganization may play a role in common human diseases such as Alzheimer''s disease and psoriasis.  相似文献   

13.

Background  

All currently available methods of network/association inference from microarray gene expression measurements implicitly assume that such measurements represent the actual expression levels of different genes within each cell included in the biological sample under study. Contrary to this common belief, modern microarray technology produces signals aggregated over a random number of individual cells, a "nitty-gritty" aspect of such arrays, thereby causing a random effect that distorts the correlation structure of intra-cellular gene expression levels.  相似文献   

14.
15.
Inference of gene pathways using mixture Bayesian networks   总被引:1,自引:0,他引:1  

Background  

Inference of gene networks typically relies on measurements across a wide range of conditions or treatments. Although one network structure is predicted, the relationship between genes could vary across conditions. A comprehensive approach to infer general and condition-dependent gene networks was evaluated. This approach integrated Bayesian network and Gaussian mixture models to describe continuous microarray gene expression measurements, and three gene networks were predicted.  相似文献   

16.

Background  

Both mechanistic features and recent correlative findings suggest a potential role for protein kinase C-beta (PKC-β) in tumor pathogenesis, particularly in B-cell malignancies. To evaluate the role of this gene in lymphoid malignancies, we analyzed global gene expression data to quantify PKC-β expression across diagnostic groups and, when possible, determined correlations between PKC-β expression and survival.  相似文献   

17.

Background

Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age.

Results

Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues.

Conclusions

Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.  相似文献   

18.

Background  

In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments.  相似文献   

19.

Background  

Microarray techniques survey gene expressions on a global scale. Extensive biomedical studies have been designed to discover subsets of genes that are associated with survival risks for diseases such as lymphoma and construct predictive models using those selected genes. In this article, we investigate simultaneous estimation and gene selection with right censored survival data and high dimensional gene expression measurements.  相似文献   

20.

Background  

To provide a broad analysis of gene expression changes in developing embryos from a solanaceous species, we produced amplicon-derived microarrays with 7741 ESTs isolated from Solanum chacoense ovules bearing embryos from all developmental stages. Our aims were to: 1) identify genes expressed in a tissue-specific and temporal-specific manner; 2) define clusters of genes showing similar patterns of spatial and temporal expression; and 3) identify stage-specific or transition-specific candidate genes for further functional genomic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号