首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
稻瘿蚊对南方水稻的危害日趋严重,育种上急需新的抗源。利用广西地方品种GXM-001-2作父本,分别与感虫品种TN1和已知抗性基因载体品系W1236(Gm1)、IET2911(Gm2)、BG404-1(gm3)、OB677(Gm4)、ARC5984(Gm5)、多抗1号(Gm6)杂交、自交和回交,获得F1、F2、BC1F1群体,对亲本和各杂交后代进行稻瘿蚊的抗性评价及遗传分析。结果表明,抗源GXM-001-2高抗稻瘿蚊中国Ⅱ型,抗中国Ⅳ型,且抗性均由1对显性基因控制;等位性测定表明抗源中的抗性基因与已知抗性基因Gm1、Gm2、gm3、Gm4、Gm5、Gm6不等位,推测该基因可能是1个新的抗稻瘿蚊基因。  相似文献   

2.
以大豆天隆1号为材料提取基因组DNA,分别克隆到长2 631 bp的Gm COL1启动子和2 809 bp的Gm COL13启动子。此外,还克隆到Gm COL1和Gm COL13基因组基因长度分别为3 488 bp和2 798 bp,它们分别编码含348个和366个氨基酸的蛋白质。利用Plant CARE分析Gm COL1和Gm COL13的启动子序列发现,它们均含有以下调控元件:生物钟元件(Circadian)、光响应元件(ACEG-box等)、ABA响应元件(ABRE)、干旱诱导元件(MBS)、低温响应元件(LTR)。Prot Param分析表明,Gm COL1和Gm COL13蛋白质的分子量分别为38.47 k D和40.91 k D,并且都是亲水性蛋白。GOR分析显示,Gm COL1和Gm COL13的二级结构含有Alpha helix,Extended strand和Random coil。在线网站PROSITE的分析说明,Gm COL1和Gm COL13有两个Zinc finger B-box和一个CCT domain(CO,CO-LIKE and TOC1 domain)结构域。  相似文献   

3.
本文研究了Gm和Km在我国汉族家庭中的遗传情况,以便确定中国人的Gm单倍型究竟如何组成。对35个汉族家庭的203名成员检查了Gm(1),(2),(3),(5),(21)和Km(1)因子。发现有6种不同的Gm表型。根据分离格局提示存在Gm(?),Gm(?),Gm~1和Gm(?)等4种Gm单倍型,它们在蒙古人种群体中较为常见。 Km(1)因子在各种Gm表型中呈随机分布,说明Gm和Km因子相互独立遗传。  相似文献   

4.
脯氨酸是一种广泛存在的渗透调节物质,在植物生长发育以及响应干旱胁迫的信号途径中具有重要作用。吡咯啉-5-羧酸合成酶(P5CS)、鸟氨酸转氨酶(δ-OAT)、吡咯啉-5-羧酸还原酶(P5CR)、脯氨酸脱氢酶(Pro DH)、吡咯啉-5-羧酸脱氢酶(P5CDH)、脯氨酸转运体(Pro T)是影响植物体内脯氨酸积累的关键酶。但关于大豆脯氨酸积累相关基因家族成员的研究尚未见报道。本研究在大豆基因组中鉴定出7个Gm P5CS、2个Gm OAT、2个Gm P5CR、5个Gm Pro DH、3个Gm P5CDH及6个Gm Pro T基因,不均匀地分布在大豆20条染色体中的12条上,发生16对片段复制事件。系统进化树分析发现,大豆脯氨酸积累相关基因家族分为不同的进化分支,同一亚族间的基因结构和保守基序相似。顺式作用元件分析结果显示,脯氨酸积累相关基因家族含响应逆境胁迫及植物激素的顺式作用元件。干旱胁迫下的表达模式分析结果显示,脯氨酸合成代谢相关基因家族成员(Gm P5CS、Gm OAT、Gm P5CR)响应干旱胁迫,在干旱胁迫24 h时显著上调表达;大多脯氨酸分解代谢相关基因家族成员(Gm Pro DH、Gm P5CDH)下调表达,脯氨酸转运相关基因家族成员(Gm Pro T)在干旱胁迫24 h显著上调表达,其中Gm P5CS5、Gm OAT1、Gm Pro T2、Gm Pro T4及Gm Pro DH3~5基因在干旱胁迫下的脯氨酸积累中可能起到关键作用。大豆幼苗P5CS、OAT活性随干旱胁迫时间的延长呈显著上升的趋势,与脯氨酸的积累呈正相关:Pro DH活性随干旱胁迫时间的增长呈显著下降的趋势,与脯氨酸的积累呈负相关。本研究为进一步解析大豆脯氨酸积累相关家族基因响应干旱胁迫的功能提供了参考。  相似文献   

5.
我国南方春大豆种子发育过程中,常处于高温、高湿季节,加之种子本身富含蛋白(约40%)和脂肪(约20%),导致南方春大豆种子易劣变。本项目组前期差异蛋白质组学研究发现蔗糖结合蛋白在高温高湿胁迫168 h时在种子田间劣变抗性品种湘豆3号发育种子中呈下调表达。为进一步从分子水平了解Gm SBP基因表达以及响应高温高湿胁迫的特性,本研究利用RT-PCR技术从大豆扩增出两个Gm SBP基因(Gm SBP2和Gm SBPL)。两个基因编码的蛋白均为亲水性,不完整的膜蛋白。荧光定量PCR分析表明:在高温高湿条件下,种子田间劣变不抗品种宁镇1号和抗性品种湘豆3号发育种子中Gm SBP2和Gm SBPL基因表达量均受高温高湿胁迫影响,也会导致种子中蔗糖和可溶性糖含量变化。在籽粒发育过程中,Gm SBP2和Gm SBPL基因表达量在花后30 d左右达到最高,对应时期的蔗糖和可溶性糖含量也达到最大值。组织特异性显示Gm SBP和Gm SBPL基因在不同组织间存在差异表达。亚细胞定位结果表明Gm SBP2和Gm SBPL蛋白均定位在细胞膜和细胞质中。以上结果表明Gm SBP2和Gm SBPL基因可能参与了植物非生物胁迫的应答过程,这将从一个侧面丰富我们对大豆种子田间劣变性和劣变抗性的认识。  相似文献   

6.
郑燕  王康  李玉婷  乔宪凤  陈茂华 《昆虫学报》2014,57(11):1335-1342
【目的】筛选适合我国梨小食心虫Grapholita molesta种群遗传学研究的微卫星位点,并依据所筛选的微卫星位点进行梨小食心虫地理种群的遗传多样性分析。【方法】利用欧洲梨小食心虫和苹果蠹蛾Cydia pomonella种群中已报道的11个微卫星位点, 分析各位点在我国12个种群257头梨小食心虫样本中的扩增稳定性,再进行其多态性分析,筛选适合的位点,然后进行种群遗传多态性分析。【结果】在分析的11个微卫星位点中, 位点Gm01, Gm03, Gm04和Cyd15无法稳定扩增; 位点Gm05扩增成功率较低, 位点Gm07遗传多态性较低; 而位点Gm02, Gm06, Gm08, Gm09和Gm10等扩增效果稳定且遗传多态性丰富。这5个稳定扩增的微卫星位点平均等位基因数量(NA)为7.417~12.500, 平均观察杂合度(Ho)为0.366~0.655, 平均期望杂合度(He)为0.642~0.846, 多态信息含量(PIC)为0.800~0.935。【结论】本研究成功筛选出位点Gm02, Gm06, Gm08, Gm09和Gm10等5个微卫星位点。基于这5个微卫星位点标记的结果显示, 山东和陕西不同梨小食心虫地理种群均具有丰富的遗传多样性。 这5个位点可以适用于我国梨小食心虫种群的进一步遗传分析研究。  相似文献   

7.
根据前期实验获得的大豆Gm BIN2基因登录号,从大豆中克隆Gm BIN2基因的全长CDS序列,得到大豆Gm BIN2基因。对大豆再生相关基因Gm BIN2的启动子序列、氨基酸序列、编码的蛋白质结构、亲疏水性以及同源进化树进行分析,结果表明,大豆再生相关基因Gm BIN2编码区c DNA长度为1 125 bp,编码374个氨基酸,Gm BIN2编码的蛋白为亲水性蛋白;分析其蛋白功能结构域发现,Gm BIN2蛋白具有丝氨酸/苏氨酸激酶催化域,为PKc-like超家族成员;构建系统进化树发现其与野生大豆亲缘较近。本研究的实验结果有利于更加深入的研究Gm BIN2基因在大豆再生过程中的关键作用,为提高大豆再生效率提供依据。  相似文献   

8.
生长素响应因子(auxin response factors,ARFs)通过调节下游靶基因广泛参与植物生长发育过程,但ARFs如何调控植物叶片衰老的分子机制还不清楚。该文首先利用实时荧光定量PCR(q PCR)技术,分析大豆生长素响应基因Gm ARF16在叶片自然衰老、人工黑暗诱导衰老、外源植物生长素IAA处理条件下的表达模式,结果表明,该基因与叶片衰老调控密切相关,并且属于生长素的原初响应基因。为了进一步验证Gm ARF16基因的功能,采用农杆菌转化方法分别获得基因敲减(Gm ARF16-RNAi)和抗降解表达(m Gm ARF16)的转基因大豆植株。与非转基因对照相比,Gm ARF16-RNAi转基因大豆植株的叶片叶绿素含量和最大光量子效率(Fv/Fm)显著提高,叶片衰老标记基因(Gm CYSP1)的表达受到抑制,而m Gm ARF16转基因大豆植株则呈现出与Gm ARF16-RNAi转基因大豆植株相反的叶片生理表型。结果表明大豆生长素响应因子Gm ARF16正调节叶片的衰老进程。该研究表明,Gm ARF16在植物生长发育进程中发挥着重要作用。  相似文献   

9.
Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses.A previous study found that the tandem CCCH zincfinger protein Gm ZF351 is an oil level regulator. In this study, we discovered that the Gm ZF351 gene is induced by stress and that the overexpression of Gm ZF351 confers stress tolerance to transgenic soybean. Gm ZF351 directly regulates the expression of Gm CIPK9 and Gm SnRK, leading to stoma...  相似文献   

10.
目的:研究预测的编码蛋白基因Gm2052在小鼠胚胎发育阶段的表达模式,为进一步了解该基因的功能奠定基础。方法:通过全胚胎原位杂交技术、组织切片原位杂交技术及半定量RT-PCR方法,对预测的Gm2052基因在小鼠胚胎发育中后期及在新生小鼠中的表达情况进行初步分析。结果:全胚胎原位杂交显示,在E10.5小鼠胚胎中,Gm2052仅在脑中表达;当小鼠胚胎发育至E13.5时,Gm2052在脑、舌、肺、肝脏、胰腺等组织中均有表达。半定量RT-PCR结果显示,在小鼠胚胎中后期(E15.5和E18.5)及新生小鼠(出生后第9 d)中,Gm2052呈动态表达模式。结论:预测基因Gm2052与小鼠脑的发育密切相关,并可能参与小鼠肺、肝脏及胰腺等主要脏器胚期的发育。  相似文献   

11.
Data from population and family studies show that the human immunoglobulin Gm allotypes prove to be unique genetic markers in studies of human genetics, particularly in the characterization of different race or population determined by the differences in Gm hapolotype composition and its frequency. In this paper, a total of 5,641 individuals from 40 populations were typed for Gma, f, x, b, and g factors. The genetic distances between 13 minorities (Zhuang, Uygur, Dong, Hui, Korean, Kazak, Bai, Tibetan, Mongolian, and Oroqen) and 27 Han populations were computed by Nei's method on the basis of Gm haplotype frequencies and a phylogenetic tree was constructed. The conclusions were (1) The common Gm haplotype are afb, axg, a, and ag. The Gmfb haplotype is observed only in Uygur, Hui, and Kazak. (2) There is a parallel relationship between genetic distance and geographic distance for these populations. (3) The Gmafb haplotype frequency increases sharply from north to south, and there is a concomitant sharp decrease in ag and axg frequencies. (4) A hypothesis was proposed by the author that the origin of the Chinese nation might exist in both the Yellow River and the Yangtze River region and the most likely boundary between the Southern and the Northern Chinese is near the thirty degrees north latitude.  相似文献   

12.
Since the discovery of Gm ab3st haplotype which characterizes Mongoloid populations in 1966, the distribution of the genetic markers of immunoglobulins (Gm) among the Mongoloid populations scattered from Southeast Asia through East Asia to South America has been investigated and concluded as follows: 1) Mongoloid populations characterized by the four Gm haplotypes, ag, axg, ab3st and afb 1b3 are divided into two groups on the basis of analysis of genetic distances based on the Gm haplotype frequencies: one is a southern group characterized by a remarkably high frequency of Gm afb 1b3 and a low frequency of Gm ag and the other is a northern group characterized by a high frequency of Gm a and an extremely low frequency of Gm afb 1b3. 2) Populations in China, mainly Han including minority nationalities, show remarkable heterogeneities from north to south, in sharp contrast to Korean and Japanese populations showing homogeneities, respectively. The center of dispersion of the Gm afb 1b3 characterizing southern Mongoloids must exist in Guangxi and Yunnan area in the southwest China. 3) The Gm ab3st gene found in the highest incidence among the north Baikal Buriats flows in all directions. The gene, however, shows precipitous drop which occur from mainland China to Southeast Asia and from North to South-America, although the Gm ab3st gene is still found in high incidences among Eskimos, Yakuts, Tibetans, Olunchuns, Koreans, Japanese and Ainus. On the other hand, the gene is introduced into Huis, Uighurs, Indians, Iranians and far Hungarians.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
调查了我国24个民族、74个群体的免疫球蛋白同种异型Gm、Km分布。测定了9560例个体的Gm(1,2,3,5,21)因子和9611例个体的Km(1)因子。根据Gm单体型频率计算了遗传距离并绘制了系统树。结果支持作者早前提出的有关中华民族起源于古代两个不同群体的假说。这两个群体大致以北纬30度为界,分别居栖在黄河和长江流域。本文数据和其他主要人种的Gm分布资料相比较,作者认为在人类进化中,尼格鲁人种首先和高加索-蒙古人种分离;然后高加索人种和蒙古人种分离。不同人种间的差异,大于同一人种内不同群体间的差异。蒙古人种明显地被分为南、北两大类型,分别以具有高频率的Gm~(1;21)和Gm~(1,3;5)单体型作为种族的标记。与高加索人种关联的Gm~(3;5)单体型存在于中国西北地区的少数民族中,提示混有高加索人种血缘。很可能来源于中亚地区的高加索人,通过“丝绸之路”进入中国。Km因子在所调查的74个群体中呈随机分布。  相似文献   

14.
Summary Since the discovery in 1966 of the Gm ab3st gene, which characterizes Mongoloid populations, the distribution of allotypes of immunoglobulins (Gm) among Mongoloid populations scattered from Southeast Asia through East Asia to South America has been investigated, and the following conclusions can be drawn: 1. Mongoloid populations can be characterized by four Gm haplotypes, Gm ag, axg, ab3st, and afb1b3, and can be divided into two groups based on the analysis of genetic distances utilizing Gm haplotype frequency distributions: the first is a southern group characterized by a remarkably high frequency of Gm afb1b3 and a low frequency of Gm ag, and the second, a northern group characterized by a high frequency of both Gm ag and Gm ab3st but an extremely low frequency of Gm afb1b3. 2. Populations in China, mainly Han but including minority nationalities, show remarkable heterogeneity of Gm allotypes from north to south and contrast sharply to Korean and Japanese populations, which are considerably more homogenous with respect to these genetic markers. The center of dispersion of the Gm afb1b3 gene characterizing southern Mongoloids has been identified as the Guangxi and Yunnan area in the southwest of China. 3. The Gm ab3st gene, which is found with its the highest incidence among the northern Baikal Buriats, flows in all directions. However, this gene shows a precipitous drop from mainland China to Taiwan and Southeast Asia and from North to South America, although it is still found in high frequency among Eskimos, Koryaks, Yakuts, Tibetans, Olunchuns, Tungus, Koreans, Japanese, and Ainus. On the other hand, the gene was introduced into Huis, Uyghurs, Indians, Iranians, and spread as far as to include Hungarians and Sardinians in Italy. On the basis of these results, it is concluded that the Japanese race belongs to northern Mongoloids and that the origin of the Japanese race was in Siberia, and most likely in the Baikal area of the Soviet Union.  相似文献   

15.
A review is made of the Gm haplotype distribution in 60 groups of Eskimos, North, Central and South American Indians, totaling 22,808 individuals. Differences were observed in the shapes of the distribution of Gm*ag and the other markers. Nearly identical values for FST and average heterozygosities were obtained in the North+Central/South comparisons. North-South and Southwest/Northeast clinal differences were observed in the Americas using correspondence factorial analysis. The two haplotypes mainly responsible for these differences are Gm*axg and Gm*abOst. When the populations are classified by language groups, besides the recognized differences between Eskimos and Athabaskan (Na-Dene) speakers compared with Amerinds, others are found. For instance, Uto-Aztecan speakers of the United States and Mexico differ in Gm frequencies from the Nuclear Chibchan, Macro-Arawak, and Carib speakers of Central and South America. The notion of a homogeneous Amerind genetic pool does not conform with these and other results. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Summary This paper reports the distribution of immunoglobulin Gm and Km allotypes in 74 Chinese geographical populations. These populations are derived from 24 nationalities comprising 96.6% of the total population of China. A total of 9,560 individuals were phenotyped for Gm(1,2,3,5,21) factors, and 9,611 were phenotyped for Km(1). Phylogenetic trees were constructed on the basis of Gm haplotype frequencies and genetic distances. The results of cluster analysis show the heterogeneity of the Chinese nation, and confirm the hypothesis that the modern Chinese nation originated from two distinct populations, one population originating in the Yellow River valley and the other originating in the Yangtze River valley during early neolithic times (3,000–7,000 years ago). Frequencies of the Gm haplotype of 74 Chinese populations were compared with those of 33 populations from major racial groups. The results suggest that during human evolution, the Negroid group and Caucasoid-Mongoloid group diverged first, followed by a divergence between the Caucasoid and Mongoloid. Interrace divergence is high in comparison with intrarace divergence. There appear to be two distinct subgroups of Mongoloid, northern and southern Mongoloid. The northern and southern Mongoloid have Gm1;21 and Gm1,3;5 haplotypes as race-associate markers, respectively. Furthermore, the Caucasian-associated haplotype Gm3;5 was found in several of the minorities living in the northwest part of China. The presence of the Gm3;5 haplotype is attributed to the Caucasians living in Central Asia throughout the Silk Road. The amount of Caucasian admixture has been estimated. In contrast to the Gm haplotype distribution, Km1 gene frequencies showed a random distribution in the populations studied.  相似文献   

17.
Previous studies have shown that there were extensive genetic admixtures in the Silk Road region. In the present study, we analyzed 252 mtDNAs of five ethnic groups (Uygur, Uzbek, Kazak, Mongolian, and Hui) from Xinjiang Province, China (through which the Silk Road once ran) together with some reported data from the adjacent regions in Central Asia. In a simple way, we classified the mtDNAs into different haplogroups (monophyletic clades in the rooted mtDNA tree) according to the available phylogenetic information and compared their frequencies to show the differences among the matrilineal genetic structures of these populations with different demographic histories. With the exception of eight unassigned M*, N*, and R* mtDNAs, all the mtDNA types identified here belonged to defined subhaplogroups of haplogroups M and N (including R) and consisted of subsets of both the eastern and western Eurasian pools, thus providing direct evidence supporting the suggestion that Central Asia is the location of genetic admixture of the East and the West. Although our samples were from the same geographic location, a decreasing tendency of the western Eurasian-specific haplogroup frequency was observed, with the highest frequency present in Uygur (42.6%) and Uzbek (41.4%) samples, followed by Kazak (30.2%), Mongolian (14.3%), and Hui (6.7%). No western Eurasian type was found in Han Chinese samples from the same place. The frequencies of the eastern Eurasian-specific haplogroups also varied in these samples. Combined with the historical records, ethno-origin, migratory history, and marriage customs might play different roles in shaping the matrilineal genetic structure of different ethnic populations residing in this region.  相似文献   

18.
For introducing Yemeni population in synthesis of genetic relationships of human populations, analysis of rhesus and Gm polymorphisms have been carried out for a population sample of 210 Yemenites. Rhesus haplotype frequencies were compared to those estimated in an original sample of 171 Tunisians and to available data for other populations. Gm haplotype frequencies were introduced in a wide synthesis of genetic relationships for 67 populations from Africa, Europe, the Near East and India. The genetic profile of Yemeni people would be close to that of a highly diversified ancestral population. The first inhabitants of North Africa, the Berbers and Yemenites have very likely a common origin and were not subject to important genetic drift after their geographic differentiation. While, the divergence between Yemenites and their neighbours of sub-Saharan Africa would have occurred with a founder effect and a long isolation. An important parallelism is observed for the Gm system between genetic and linguistic differentiations.  相似文献   

19.
The populations of India are genetically diverse, both within and between geographic regions; immunoglobulin (GM) allotypes provide important information on genetic differences between populations, since the frequencies of combinations of allotypes (termed "haplotypes") vary dramatically among ethnic groups. As part of a project to assess genetic diversity among defined Indian populations, we have examined eight GM allotypes in a sample of 101 unrelated Sikhs who have migrated to Toronto, Canada: Glm(1, 2, 3, 17) and G3m (5, 15, 16, 21). Sikhs are a religious group that arose in the Punjab about 1500 A.D.; most of the original converts are believed to have been middle to upper-middle caste Hindus. Gm allotyping showed that six Gm haplotypes occurred at polymorphic frequencies (greater than 0.01) in Sikhs: Gm3;5, Gm1,17;21, Gm1,2,17;21, Gm1,17;5, Gm1,17;15,16, and Gm1,3;5. These haplotypes have all been previously reported in Indian populations. The frequencies of the first four haplotypes resembled the published frequencies for lower-caste Hindus of NW India more than upper-caste Hindus. However, the last two haplotypes have been found only in upper-caste Hindus. The frequency of one of these, Gm1,17;15,16 was higher in Sikhs (0.09) than has been reported in any Indian population with the exception of Parsis (who are descended from Iranians). We speculate that the high frequency of this haplotype may have been characteristic of some of the Hindu castes in the Punjab from which Sikhs are descended.  相似文献   

20.
宁夏回族红细胞血型的研究   总被引:8,自引:3,他引:5  
调查了219名宁夏回族的 ABO、MNSs、Rhesus、P、Lewis、Duffr、Kidd Diego 、Kell、Lutheran和Xg等11种系统的红细胞血型。结果表明,宁夏回族有较高的q(0.2530)、Fy~a(0.9270)、CDe(0.6225) 和E(0.2660) 等基因或染色体频率;d(0.0557)、s(0.0594)、P_1(0.1316)和 Le~a(0.3882)等基因频率较低;而未发现K和Lu~a基因;Di~a的频率为0.0349,也处于低水平;Ns(0.4984)连锁率高于 Ms(0.4422);Xg~a基因频率为0.4432。11个系统的红细胞血型的分布和遗传距离分析均反映了宁夏回族的遗传组成具有我国北方民族的特征,尤其接近于北方汉族和蒙古族,与新疆维吾尔族则存在较大的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号