首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
电压互感器二次绕组中性点保护措施研究   总被引:1,自引:1,他引:0  
实施雷电侵入、雷直击和工频接地故障状态下电压互感器二次绕组中性点的雷电传递和地网两点间电位差的实验和仿真研究。结果显示:雷电冲击波头对二次侧振荡峰值的影响非常明显,电压型和电容型电压互感器的传递过电压幅值均随波头时间的缩短而上升;加装避雷器保护后传递到二次绕组中性点的过电压得到了明显的限制,表明低压无间隙金属氧化物避雷器(MOA)适用于电压互感器二次绕组中性点过电压保护,但所选择的避雷器额定电压要与实际情况相适应。  相似文献   

2.
配变防雷装置除了高低压侧加装避雷器作为保护外,还应考虑高压侧避雷器及其接地引线上的残压之和不超过其冲击电压,因此,引线的长度应引起关注.  相似文献   

3.
配电变压器(简称配变)作为配网的重要组成部分,绝缘水平低,易遭受雷电过电压的侵害,其安全运行对配电网稳定性及可靠性具有十分重要的意义。采用散射参数测量法,测量配变散射参数并经数据处理获得配变的阻抗幅频特性,经电路拟合构建了适用于雷击情况的配变宽频模型,并经基于模拟退火法的粒子群算法对等效电路参数进行优化,实测结果表明配变实际输出响应与文中宽频模型仿真结果吻合度较高。基于该宽频模型分析了冲击电晕对配变过电压传播的影响以及配变防雷保护措施,结果表明冲击电晕显著减小配变过电压幅值,配变低压侧加装避雷器对其防雷作用明显。  相似文献   

4.
针对陕西地区配电线路避雷器防雷效果不理想这一现状,提出一种多腔室雷击闪络限制器。该装置防雷性能优异,采用吹弧原理,熄弧能力强。经过试验,确定其串联级数为26级,电极直径8 mm,电极间隙1 mm,主间隙距离取45 mm时能可靠动作。工频湿耐受电压、50%雷电冲击动作电压、雷电冲击伏秒特性以及工频续流遮断能力均满足标准要求。装置在陕西地区典型线路上运行良好,防雷效果优异。  相似文献   

5.
对山西焦煤矿区某35 kV变电站雷电过电压入侵变电站损坏主变中性点绝缘的典型事故进行了分析与讨论,分析了全绝缘结构变压器的防雷弱点,如线路与变电站设备绝缘配合不当、站内终端塔避雷针引雷、站内局部冲击接地电阻过高等方面的因素。通过高电压实验室试验测得绝缘子的雷电冲击电压值,并提出了变压器中性点加装避雷器、完善进线段保护、拆除进线段不当的防雷设施、降低站内局部冲击接地电阻等防雷改造措施。  相似文献   

6.
采用避雷器提高青藏铁路110 kV输电线路耐雷水平   总被引:3,自引:0,他引:3  
针对青藏铁路沿线输电线路防雷问题,以沿线110 kV输电线路为例,建立了线路防雷击计算模型。仿真分析了避雷器不同安装方式时输电线路的耐雷水平,以及不同杆塔接地电阻时通过避雷器的雷电放电电流和吸收能量。计算结果表明,杆塔接地电阻对输电线路耐雷水平有很大的影响,避雷器安装方式不同耐雷水平提高程度不同,雷电冲击时避雷器具有足够大的雷电导通能力。  相似文献   

7.
为检验10 kV带间隙防雷装置在冲击闪络后熄灭工频续流电弧的能力,设计了一种冲击试验与工频续流试验相结合的试验回路。为了产生较高电压下的高幅值工频续流,采用LC串并联谐振回路产生工频续流,对该回路中各元件的参数进行计算并给出合理数值,最后利用同步控制回路提取冲击信号来导通工频续流回路,实现冲击试验与工频续流试验的同步。计算结果表明,该联合试验回路能在产生1.2/50 μs冲击波的同时产生频率为50 Hz的正弦电流波且电流的振荡能够持续至少100 ms,满足带间隙防雷装置在冲击闪络后,检验工频续流下熄灭电弧能力的要求。  相似文献   

8.
《电网技术》2021,45(3):1208-1213
为了验证35 kV线路用自灭弧防雷间隙在继电保护动作前的灭弧有效性,因此对其工频续流遮断能力进行研究。对自灭弧防雷间隙进行灭弧机理分析,明确其多断口灭弧结构的性能。依照国家标准中雷电冲击放电试验和空气间隙距离的规定进行试验,确定其击穿放电电压应大于325.1 kV,空气间隙距离约376mm,额定电压为40.5kV。根据IEC标准搭建了工频续流遮断试验平台。该试验平台能够产生1.2/50μs的标准雷电冲击电压和10个完整周期且频率为50 Hz左右的工频电压,并具有选相触发能力。工频续流遮断试验结果表明:35 kV自灭弧防雷间隙在1.5 ms附近产生的气流作用于电弧最为强烈,在3 ms内熄灭峰值为1.289 kA的工频续流,且不会发生电弧重燃现象。  相似文献   

9.
为检验10 kV带串联间隙防雷装置工频续流遮断能力及电弧熄灭后在工频电压作用下重燃的可能性,设计了一种冲击试验与工频续流试验相结合的一体化试验装置,介绍了该装置的功能、结构、主要部件的设计参数以及试验方法,并通过试验验证了该试验装置的合理性。通过LC串联谐振回路输出较高电压下的高幅值工频续流,利用同步控制回路提取工频振荡信号来导通冲击信号,实现冲击试验与工频试验的同步。结果表明:该一体化联合试验装置能同时产生频率为50 Hz的振荡电压和波形为1.2/50μs的冲击电压,并能在试品未遭受冲击电压作用时提供系统工频电压,能在试品击穿的同时提供高幅值振荡电流,还能在试品切断续流后提供系统工频电压以检验其重新燃弧的可能性。因此该装置可作为检验带串联间隙防雷装置防雷性能的试验装置。  相似文献   

10.
为了研究某高压厂用变压器在雷击后造成机组停运的原因,分析了故障录波,开展了高厂变的油色谱、绝缘电阻、直流电阻、直流耐压泄漏电流、介质损耗、低电压短路阻抗、交流耐压等试验,得出了变压器在承受较大短路电流后绝缘正常,故障的发展首先是两相短路、后发展为三相短路的判断。在现场测绘防雷接地布置的基础上,结合土壤、雷声和弧光情况,计算并推断了雷电反击过电压使得绝缘闪络,后在工频电压作用下持续电弧放电,造成高厂变低压侧母排两相及三相短路的过程,分析得出故障原因为变压器区域墙顶的避雷器接地引下线布置安装不能满足标准规定要求。最后提出了相应的防范措施,为类似雷电反击事故的分析提供具有重要参考价值的信息。  相似文献   

11.
郭云才  韦良文  张海燕  杨民 《高压电器》2012,48(1):114-117,121
通过现场雷击灾害调查和采集雷灾现场储油罐变形处的剩磁、接地电阻等相关数据,分析了油井设施雷击灾害原因。计算出储油罐变形处的直击雷过电压高达2 100 kV、10 kV变压器感应过电压为180 kV、1 140 V电机上的过电压为20.8 kV、电视机的过电压达到4 014 V都超过了相关设备的耐压值。然后根据理论分析的结论探讨了油井储油罐、采油机、电机、变压器的直击雷防护措施,建议采取在变压器高压侧装设额定电压为15 kV的氧化锌避雷器,在后续输电线路的第1级采用8/20μs波形、通流量大于80 kA的浪涌保护器、第2级采用8/20μs波形通流量40 kA且残压小于设备耐压值的浪涌保护器的过电压保护措施。  相似文献   

12.
To construct low-voltage power distribution systems, it is important to have correct information on the probability of failures by lightning to meet the requirement for high reliability of these systems. The burn-out of low-voltage distribution equipment is triggered by flashover due to lightning overvoltage followed by the arc discharge current at the commercial frequency voltage. The arc characteristics were investigated by superimposing the lightning impulse voltage across terminals of the low-voltage distribution equipment connected to the commercial frequency power supply to reproduce these events on an experimental basis. As a result, it was found that the arc characteristics were affected by a number of factors. The probability of flashover occurrence on low-voltage distribution equipment is determined based on the frequency distribution data of lightning overvoltage occurrence obtained by monitoring the surge counters on actual distribution lines. Then the probability distribution of arc currents is established by application of the forementioned experimental equation on arc characteristics. Finally, the method for evaluating damages by lightning to low-voltage distribution equipment on actual lines was investigated with the frequency of lightning strokes and the configuration of low-voltage distribution systems taken into consideration.  相似文献   

13.
针对建筑物低压配电系统在防雷过程中存在的问题,阐述了建筑物低压配电系统防雷设计时安装电源SPD的接地问题及SPD的能量配合问题。对设有独立变压器的建筑物如何进行变压器低压侧雷电防护设计作了探讨,可为电气设计人员提供参考。  相似文献   

14.
架空输电线路在电力系统中作为用户与发电厂的连接枢纽,线路可靠防雷与安全运行尤为重要。分析由输电线路上测得的雷电数据,证实了多脉冲雷电的存在,统计并分析雷电波前时间、波尾时间、极性及幅值参数。电磁暂态仿真软件ATP-EMTP对多脉冲雷电、架空输电线路、杆塔、绝缘子串、避雷器建立仿真模型。仿真分别计算在线路是否安装避雷器时,在单脉冲和多脉冲下发生直击和反击时的响应情况。比较两种不同脉冲雷电下线路过电压的差别。仿真分析表明:避雷器能有效的限制雷电过电压的幅值,并且在多脉冲雷电冲击时,输电线路会出现更高的雷电过电压,且持续时间更长的现象,使其防雷形势更加严峻。  相似文献   

15.
基于人工触发闪电T179的10次回击过程,分析了雷电流作用下2个独立地网的相互作用及转移地电位特征,并通过冲击低压电源浪涌保护器(SPD),计算和评估了转移地电位冲击SPD的能量。结果发现,地网隔离40 m距离产生的转移电位(TGP)电压峰值比较大,平均值可达–10.9 kV。TGP电压峰值与触发闪电电流峰值之间呈现非常好的正相关性,拟合优度R2达到0.97。冲击SPD的能量比较小,10次回击平均值为1.5 J,电子设备加装SPD浪涌保护器是相对安全。  相似文献   

16.
笔者采用ATP暂态仿真软件,对典型变电站各级防雷保护情况建模,计算了传递到变电站二次系统的雷电过电压。提出了在进线段安装保护间隙、变压器高低压侧同时安装避雷器、低压电源系统完善三级防雷的配电系统的各级防雷措施,并对其配合情况进行了仿真。该模型对防雷保护元器件的选取、各级防雷配合提供了计算机辅助依据,对变电站各级防雷保护的绝缘配合具有一定的指导意义。  相似文献   

17.
通过对建筑能源管理现状以及电力需求侧管理技术发展的分析,提出一种基于电力需求侧管理的建筑智能能源管理系统,系统通过对能耗的实时监测、统计分析和优化管理,实现需求侧负荷曲线优化和节能管理。以上海某科技园内两幢建筑为例,介绍了基于电力需求侧管理的建筑智能能源管理系统的实际应用效果,说明系统在建筑节能、需求侧管理中起到的重要作用。  相似文献   

18.
常俊  姜玉宏 《黑龙江电力》2014,(2):129-132,135
风力发电场的场内输电线路是防雷保护的薄弱环节.当雷电击中输电线路时,会造成线路过电压,损坏电力变压器设备.对此,笔者以某风力发电场雷击事故为例,利用电磁暂态程序ATP/EMTP建立雷电直击于输电线路的模型,定量计算出升压变压器上的暂态过电压和流过电缆的最大雷电流,综合考虑安装线路避雷器和降低接地电阻对计算结果的影响,然后确定风电场场内输电线路有效的防雷保护方案,确保变压器安全可靠运行.仿真分析验证,采用该方案能提高场内输电线路的耐雷水平,能起到保护变压器安全运行的作用.  相似文献   

19.
10 kV台区配电变压器是配电网最重要的设备之一,但在多雷区时常发生雷击损坏故障。根据台区典型设计和现场勘查结果,建立了雷电直击导线和雷电感应下的电磁暂态仿真模型,分析了配电变压器高压侧绝缘的雷电过电压,结果如下:雷电直击导线后,变压器绝缘承受的电压为避雷器残压和接地引下线电压之和,过电压幅值极易超过标准雷电耐受电压75 kV;雷电感应的能量较小,过电压幅值超过标准雷电耐受电压的概率非常小。同时,研究了加装避雷线对雷电直击过电压的防治效果,发现避雷线可大幅降低过电压幅值,若在此基础上缩短避雷器横担至变压器支架的电气距离,可大大降低变压器损坏概率。  相似文献   

20.
当冲击电压波侵入到变压器高压绕组时,除在本绕组内产生暂态振荡外,也会通过静电和电磁感应传递到低压绕组中,使低压绕组侧产生过电压。本文以主变压器高压侧避雷器的残压为冲击电压限值,对主变压器低压侧和发电机出口可能的过电压,以及发电机出口冲击电压上升速度进行近似计算,并以此为依据选择避雷器和电容器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号