首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mesenchymal chondrosarcomas are rare skeletal malignancies, which are typically characterized by tumor compartmentation. One tumor area is formed by small, undifferentiated neoplastic cells, whereas the second compartment is composed of cartilaginous areas. In this study, the application of in situ detection techniques enabled us to characterize the different tumor compartments according to their cellular differentiation patterns. The use of characteristic marker genes identified all steps of chondrogenesis within the different tumor compartments. Undifferentiated tumor cells in the small-cell areas were negative for vimentin and the cytoprotein S-100, whereas other tumor cells expressed collagen type IIA and vimentin indicating a chondroprogenitor cellular phenotype in these small-cell areas. Fully differentiated chondrocytic cells expressing collagen type II were found in the chondroid areas. The focal expression of type X collagen indicated hypertrophic differentiation of the neoplastic chondrocytes. The results characterize mesenchymal chondrosarcomas as skeletal malignancies that arise from undifferentiated chondroprogenitor cells and have the potential to undergo all steps of chondrocytic differentiation.  相似文献   

2.
Many studies have shown increased anabolic activity in osteoarthritic cartilage and have suggested changes in the cellular phenotypes of articular chondrocytes. Most of these studies relied on non-quantitative technologies, which did not allow the estimation of the relative importance of the different differentiation phenomena. In the present study, we developed and used quantitative PCR assays for collagen types I, II(total), IIA, III, and X as marker genes indicating cellular synthetic activity (collagen type II) as well as differentiation pattern of chondrocytes (collagen types I, IIA, III, and X) and quantified these genes in normal, early degenerative, and late stage osteoarthritic cartilage in parallel.At first sight, our results confirmed previously published data showing hardly any expression of collagen genes in normal and significantly enhanced expression in osteoarthritic cartilage. This included collagen types II, III, and IIA, but also collagen types I(alpha1) and X. However, if one considers the ratios of the various markers of chondrocytic differentiation in comparison to collagen type II, the main synthetic product of differentiated chondrocytes, no shift in the cellular phenotype was detectable. In fact, expression ratios remained constant or were even decreased in osteoarthritic cartilage.Our results confirm that normal adult human articular chondrocytes display hardly any expression activity of the collagen types investigated, whereas osteoarthritic chondrocytes show very increased synthetic activity. The largely unchanged ratios of collagen subtypes investigated indicate that no general shift in the cellular phenotype does occur in osteoarthritic cartilage as suggested by previous investigations.  相似文献   

3.
OBJECTIVE: To investigate the gene expression profile and the histological aspects of articular cartilage of patients affected by Morquio syndrome, a lysosomal storage disease characterized by the accumulation of glycosaminoglycans within the cells which result in abnormal formation and growth of the skeletal system. METHOD: Articular cartilage samples were obtained from the femoral condyle of two siblings with Morquio syndrome during surgery performed to treat valgus knee. As controls, four biopsy samples of healthy cartilage were obtained from four different male multiorgan donors. A Real-Time Polymerase Chain reaction (RT-PCR) analysis was performed to evaluate the expression of type I and II collagens and aggrecan mRNAs. Histological and immunohistochemical analyses for some matrix proteins were carried out on paraffin embedded sections. RESULTS: Type I collagen mRNA mean level was higher in the samples of patients with Morquio syndrome compared to controls. Type II collagen and aggrecan mRNAs' mean expression was instead lower. The morphological appearance of the cartilage showed a poorly organized tissue structure with not homogeneously distributed cells that were larger compared to normal chondrocytes due to the presence inside the vacuoles of proteoglycans which were not metabolized. Chondrocytes were negative for collagen II immunostaining while the extracellular matrix was weakly positive. Collagen type I immunostaining was positive at cellular level. Keratan sulfate showed diffuse positivity and chondroitin-6-sulfate was present throughout the cartilaginous thickness. CONCLUSION: In cartilage of patients with Morquio syndrome, a low expression of collagen type II and a high expression of collagen type I both at protein and molecular levels are evidentiated. This finding could give evidence of the reduction in ankle and knee joint movement observable in these patients.  相似文献   

4.
5.
6.
A case of chondroblastoma with intracranial extension from middle cranial base is reported here. Chondroblastomas usually arise from the epiphysis of long bone. Intracranial chondroblastomas are very rare and only 14 cases have been reported. Histological feature of this tumor is to have numerous multinucleated giant cells resembling the giant-cell tumor. But this case has the typical features of chondroblastoma in the histological, immunohistochemical, and electron microscopical studies.  相似文献   

7.
INTRODUCTION: Isolating and culturing primary chondrocytes such that they retain their cell type and differentiate to a hypertrophic state is central to many investigations of skeletal growth and its regulation. The ability to store frozen chondrocytes has additional scientific and tissue engineering interest. Previous work has produced approaches of varying yield and complexity but does not permit frozen storage of cells for subsequent differentiation in culture. Investigations of growth plate dysplasias secondary to defective osteoclastogenesis in rodent models of osteopetrosis led us to adapt and modify a culture method and to cryopreserve neonatal rat costochondral chondrocytes. METHODS: Chondrocytes were isolated from dissected ribs of 3-day-old rat pups by collagenase, hyaluronidase, and trypsin serial digestions. This was done either immediately or after the isolation was interrupted following an initial protease treatment to allow the chondrocytes, still in partially digested rib rudiments, to be frozen and later thawed for culture. Cells were plated in flat-bottom wells and allowed to adhere and grow under different conditions. Choice of media permitted cells to be maintained or induced to differentiate. Cell growth was monitored, as was expression of several relevant genes: collagen types II and X; osteocalcin, Sox9, adipocyte FABP, MyoD, aggrecan, and others. Mineralization was measured by alizarin red binding, and cultures were examined by light, fluorescence, and electron microscopy. RESULTS: Cells retained their chondrocyte phenotype and ability to differentiate and mineralize the collagen-rich extracellular matrix even after freezing-thawing. RT-PCR showed retention of chondrocyte-specific gene expression, including aggrecan and collagen II. The cells had a flattened, "proliferating zone" appearance initially, and by 2 weeks post-confluence, exhibited swelling and other salient features of hypertrophic cells seen in vivo. Collagen fibrils were abundant in the extracellular matrix, along with matrix vesicles. The switch to collagen type X as marker for hypertrophy was not rigidly temporally regulated as happens in vivo, but its expression increased during hypertrophic differentiation. CONCLUSIONS: This method should prove valuable as a means of studying chondrocyte regulation and has the advantages of simpler initial dissection, yields of a purer chondrocyte population, and the ability to stockpile frozen raw material for subsequent studies.  相似文献   

8.
9.
Runx proteins mediate skeletal development. We studied the regulation of Runx1 during chondrocyte differentiation by real-time RT-PCR and its function during chondrogenesis using overexpression and RNA interference. Runx1 induces mesenchymal stem cell commitment to the early stages of chondrogenesis. INTRODUCTION: Runx1 and Runx2 are co-expressed in limb bud cell condensations that undergo both cartilage and bone differentiation during murine development. However, the cooperative and/or compensatory effects these factors exert on skeletal formation have yet to be elucidated. MATERIALS AND METHODS: Runx1/Cbfa2 and Runx2/Cbfa1 were examined at different stages of embryonic development by immunohistochemistry. In vitro studies used mouse embryonic limb bud cells and assessed Runx expressions by immunohistochemistry and real-time RT-PCR in the presence and absence of TGFbeta and BMP2. Runx1 was overexpressed in mesenchymal cell progenitors using retroviral infection. RESULTS: Immunohistochemistry showed that Runx1 and Runx2 are co-expressed in undifferentiated mesenchyme, had similar levels in chondrocytes undergoing transition from proliferation to hypertrophy, and that there was primarily Runx2 expression in hypertrophic chondrocytes. Overall, the expression of Runx1 remained significantly higher than Runx2 mRNA levels during early limb bud cell maturation. Treatment of limb bud micromass cultures with BMP2 resulted in early induction of both Runx1 and Runx2. However, upregulation of Runx2 by BMP2 was sustained, whereas Runx1 decreased in later time-points when type X collagen was induced. Although TGFbeta potently inhibits Runx2 and type X collagen, it induces type II collagen mRNA and mildly but significantly inhibits Runx1 isoforms in the early stages of chondrogenesis. Virus-mediated overexpression of Runx1 in mouse embryonic mesenchymal cells resulted in a potent induction of the early chondrocyte differentiation markers but not the hypertrophy marker, type X collagen. Knockdown or Runx1 potently inhibits type II collagen, alkaline phosphatase, and Runx2 and has a late inhibitory effect on type X collagen. CONCLUSION: These findings show a distinct and sustained role for Runx proteins in chondrogenesis and subsequent chondrocyte maturation. Runx1 is highly expressed during chondrogenesis in comparison with Runx2, and Runx1 gain of functions stimulated this process. Thus, the Runx genes are uniquely expressed and have distinct roles during skeletal development.  相似文献   

10.
三步酶消化法高效分离兔原代关节软骨细胞及体外培养观察   总被引:14,自引:0,他引:14  
Zhou Q  Li QH  Dai G  Shi GH 《中华外科杂志》2005,43(8):522-526
目的 观察设计的三步酶消化法分离原代关节软骨细胞的效果,并对体外培养不同代次细胞的生物学活性进行评价。方法 三步酶消化法设计为以培养液配制的1g/L胰蛋白酶及1g/LEDTA混合液、1g/L透明质酸酶和2g/LⅠ型胶原酶顺序消化关节软骨分离细胞,检测细胞收获效率和存活率;体外传代培养观察细胞形态、生长及胞外基质中Ⅰ型和Ⅱ型胶原、蛋白多糖聚集体等的变化。结果 (1)关节软骨经三步酶消化基质逐步解离和降解,细胞得以完全释放和分离,每克软骨的细胞收获量平均为50 3×106 个细胞,细胞存活率平均为98. 8%。(2)原代和第一代细胞附壁生长呈三角形或多角形,生长融合时呈卵圆形,Ⅱ型胶原免疫组化和甲苯胺蓝异染反应均呈阳性,原代细胞外基质有高的硫酸糖胺多糖含量为(92±10)μg/cm2;第三代后细胞逐渐变为梭形,Ⅱ型胶原免疫组化为阴性,甲苯胺蓝异染反应明显减弱,第四代细胞外基质的硫酸糖胺多糖含量为(48±12)μg/cm2。结论 (1)三步酶消化法可使关节软骨基质完全消化降解,具有高细胞收获率、高细胞存活率和操作简便等特点。(2)原代和第一代软骨细胞具有良好的生物学活性,而第三代以后的细胞生物学活性低下。  相似文献   

11.
Endochondral bone formation occurs through a series of developmentally regulated cellular stages, from initial formation of cartilage tissue to calcified cartilage, resorption, and replacement by bone tissue. Nasal cartilage cells isolated by enzymatic digestion from rat fetuses were seeded at a final density of 105 cell/cm2 and cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal calf serum in the presence of ascorbic acid and β-glycerophosphate. First, cells lost their phenotype but in this condition they rapidly reexpressed the chondrocyte phenotype and were able to form calcified cartilaginous nodules with the morphological appearance of cartilage mineralization that occurs in vivo during endochondral ossification. In this mineralizing chondrocyte culture system, we investigated, between day 3 and day 15, the pattern expression of types II and X collagen, proteoglycan core protein, characteristic markers of chondrocyte differentiation, as well as alkaline phosphatase and osteocalcin associated with the mineralization process. Analysis of labeled collagen and immunoblotting revealed type I collagen synthesis associated with the loss of chondrocyte phenotype at the beginning of the culture. However, our culture conditions promoted extracellular matrix mineralization and cell differentiation towards the hypertrophic phenotype. This differentiation process was characterized by the induction of type X collagen mRNA, alkaline phosphatase, and diminished expression of type II collagen and core protein of large proteoglycan after an increase in their mRNA levels before the mineralizing process. These results revealed distinct switches of the specific molecular markers and indicated a similar temporal expression to that observed in vivo recapitulating all stages of the differentiation program in vitro. Received: 12 December 1996 / Accepted: 26 June 1997  相似文献   

12.
13.
Chondrogenic differentiation by mesenchymal progenitor cells (MPCs) is associated with cytokines such as transforming growth factor-beta 1 (TGF-beta1) and dexamethasone. Extracellular matrix (ECM) also regulates the differentiation by MPCs. To define whether ECM plays a functional role in regulation of the chondrogenic differentiation by MPCs, an in vitro model was used. That model exposed to dexamethasone, recombinant human TGF-beta1(rhTGF-beta1) and collagens. The results showed that MPCs incorporated with dexamethasone and rhTGF-beta1 increased proliferation and expression of glycosaminoglycan (GAG) after 14 days. Type II collagen enhanced the GAG synthesis, but did not increase alkaline phosphatase (ALP) activity. When adding dexamethasone and rhTGF-beta1 MPCs increased mRNA expression of Sox9. Incorporation with type II collagen, dexamethasone and rhTGF-beta1, MPCs induced mRNA expression of aggrecan and enhanced levels of type II collagen, and Sox9 mRNA. In contrast, incorporation with type I collagen, dexamethasone and rhTGF-beta1 MPCs reduced levels of aggrecan, and Sox9 mRNA, and showed no type II collagen mRNA. Altogether, these results indicate that type I and II collagen, in addition to the cytokine effect, may play a functional role in regulating of chondrogenic differentiation by MPCs.  相似文献   

14.
The classification of cartilaginous neoplasms of the craniospinal axis is controversial. Indeed, the very existence of chondroid chordomas has recently been questioned. In an effort to clarify the direction of differentiation of cartilaginous neoplasms of this region, 17 neoplasms obtained from 17 patients with cartilaginous tumors of the craniospinal axis were examined by immunohistochemistry with a panel of antibodies. The panel included antibodies to cytokeratin (CK), epithelial membrane antigen (EMA), vimentin (VIM), S-100 protein, carcinoembryonic antigen (CEA), and type II collagen. Areas with cartilaginous differentiation were present in all 17 neoplasms. These areas were characterized by a matrix of amorphous blue ground substance with lacunae that contained enlarged and slightly atypical cells. This cartilaginous matrix stained strongly for type II collagen. Thirteen of the 17 neoplasms had a biphasic growth pattern in which areas with conventional chordoma were admixed with areas with cartilaginous differentiation. The cells within the cartilaginous components of these 13 neoplasms stained for CK (10 of 12 cases), EMA (10 of 13 cases), VIM (12 of 12 cases), S-100 protein (seven of 12 cases), and CEA (two of nine cases). Similarly, the conventional chordoma components of these same 13 neoplasms stained for CK (12 of 12 cases), EMA (13 of 13 cases), VIM (12 of 12 cases), S-100 protein (nine of 12 cases), and CEA (two of nine cases). The hyaline-appearing areas between the cords and sheets of cells of the conventional chordoma components of these 13 tumors also stained with type II collagen. These 13 tumors with both neoplastic cartilage and conventional chordoma were classified as chondroid chordomas. One of the 17 cases was composed entirely of neoplastic cartilage; however, the cells within the matrix of the cartilage of this neoplasm stained with the epithelial markers (CK and EMA). Based on the presence of epithelial differentiation within this otherwise cartilaginous neoplasm, it was also classified as a chondroid chordoma. In contrast, the remaining three cases without histologic evidence of chordoma differentiation did not stain for CK or EMA, but they did stain for S-100 protein (three of three cases) and VIM (three of three cases). These three tumors were therefore classified as chondrosarcomas. For purposes of comparison, 19 conventional chordomas without cartilage and 29 peripheral chondrosarcomas were also stained. The 19 conventional chordomas stained in a pattern similar to the conventional chordoma components of the chondroid chordomas, whereas the 29 peripheral chondrosarcomas stained in a pattern similar to the three chondrosarcomas of the craniospinal axis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Articular cartilage is an avascular tissue composed of chondrocytes, a unique cell type responsible for abundant matrix synthesis and maintenance. When damaged, it never heals spontaneously under physiological circumstances. Therefore, the delivery of mesenchymal stem cells using hydrogel has been considered for cartilage repair. This study aims at investigating the influence of in vitro chondrogenic differentiation of human adipose tissue-derived stem cells (hATSCs) on in vivo cartilage formation when associated with a cellulose-based self-setting hydrogel (Si-HPMC). hATSCs were characterized for their proliferation, surface marker expression, and multipotency. The in vitro chondrogenic potential of hATSCs cultured within Si-HPMC in control or chondrogenic medium was evaluated by measuring COL2A1, ACAN, SOX9, and COMP expression by real-time PCR. Alcian blue and type II collagen staining were also performed. To determine whether in vitro chondrogenically differentiated hATSCs may give rise to cartilage in vivo, cells differentiated as a monolayer or in pellets were finally associated with Si-HPMC and implanted subcutaneously into nude mice. Cartilage formation was assessed histologically by alcian blue and type II collagen staining. Our data demonstrate that hATSCs exhibited proliferation and self-renewal. hATSCs also expressed typical stem cell surface markers and were able to differentiate towards the adipogenic, osteogenic, and chondrogenic lineages. Real-time PCR and histological analysis indicated that Si-HPMC enabled chondrogenic differentiation of hATSCs in inductive medium, as demonstrated by increased expression of chondrogenic markers. In addition, histological analysis of implants showed that chondrogenically differentiated hATSCs (monolayers or pellets) have the ability to form cartilaginous tissue, as indicated by the presence of sulphated glycosaminoglycans and type II collagen. This study therefore suggests that an in vitro induction of hATSCs in 2D was sufficient to obtain cartilaginous tissue formation in vivo. Si-HPMC associated with autologous hATSCs could thus be a significant tool for regenerative medicine in the context of cartilage damage.  相似文献   

16.
A nonimmobilized rat tibial fracture model of endochondral osseous repair was examined for the unique localizations of specific collagen genetic types. At various stages of the healing process, the demineralized callus was reacted with immunofluorescent antibodies directed against the type specific forms of matrix collagen. Type III collagen rapidly appeared (day 8-10) and remained in the primitive mesenchymal callus until remodeled. It was particularly prominent in the highly vasoformative regions and the pericallus encapsulation but not present in preexisting cortical and neoformed lamellar bone. The type II collagen, a marker of cartilage, was uniquely located only in areas of chondroid differentiation and calcification. Type II collagen was absent from all bone and was not identified beneath the repairing intact periosteum. The differentiating chondrocytes synthesized type II collagen on an underlayer of type III collagen already within the mesenchymal matrix. From these studies of genetically unique collagen markers, it appears that only in areas of motion or anoxia does an intermediate of chondroid tissue appear. The utilization of specific type II and type III collagen immunofluorescent antibodies has facilitated the understanding of the fracture repair process and has acted as an indicator for unique matrix components.  相似文献   

17.
Interaction of chondrocytes with the surrounding matrix significantly influences differentiation and growth. These processes involve cell surface proteins, particularly integrins. The aim of this study was to compare the expression of integrins (alpha1, alpha2, alpha3, alpha5, alpha6, alphav, beta1, beta3, and beta5 subunits) together with matching binding proteins in human childhood and adolescent growth plate cartilage using immunohistochemistry. Integrin beta1 was detected in all chondrocytes of the growth plate cartilage, beta3 only in osteoclasts of the opening zone, and beta5 in hypertrophic chondrocytes and osteoblasts. Integrin alpha1, alpha2, and alpha5 subunits were expressed by chondrocytes in the proliferative and hypertrophic zone as well as in osteoblasts and osteoclasts. Integrin av and alpha6 subunits were present in chondrocytes of all zones, alpha3 only in osteoclasts. Collagen type II and fibronectin were seen throughout the growth plate, collagen type X in the hypertrophic zone, collagen type I in the ossifying trabecules. Laminin was expressed by chondrocytes in the resting zone and more weakly in the proliferative zone, collagen VI was present in the pericellular and interterritorial matrix in all zones of the growth plate. These results differ from previous reports on the distribution of integrins in the fetal growth plate. However, there was no difference in integrin expression in children before and during puberty. Our results indicate that integrin expression is not influenced by endocrine factors during sexual maturation and suggest that the process of skeletal maturation is not regulated via altered integrin expression.  相似文献   

18.

Purpose

Our aim was to explore the effect of varying in vitro culture conditions on general chondrogenesis of minced cartilage (MC) fragments.

Methods

Minced, fibrin-associated, bovine articular cartilage fragments were cultured in vitro within polyurethane scaffold rings. Constructs were maintained either free swelling for two or four weeks (control), underwent direct mechanical knee-joint-specific bioreactor-induced dynamic compression and shear, or they were maintained free swelling for two weeks followed by two weeks of bioreactor stimulation. Samples were collected for glycosaminoglycan (GAG)/DNA quantification; collagen type I, collagen type II, aggrecan, cartilage oligomeric matrix protein (COMP), proteoglycan-4 (PRG-4) messenger RNA (mRNA) analysis; histology and immunohistochemistry.

Results

Cellular outgrowth and neomatrix formation was successfully accomplished among all groups. GAG/DNA and collagen type I mRNA were not different between groups; chondrogenic genes collagen type II, aggrecan and COMP revealed a significant downregulation among free-swelling constructs over time (week two through week four). Mechanical loading was able to maintain chondrogenic expression with significantly stronger expression at long-term time points (four weeks) in comparison with four-week control. Histology and immunohistochemistry revealed that bioreactor culture induced stronger cellular outgrowth than free-swelling constructs. However, weaker collagen type II and aggrecan expression with an increased collagen type I expression was noted among this outgrowth neotissue.

Conclusions

The method of MC culture is feasible under in vitro free-swelling and dynamic loading conditions, simulating in vivo posttransplantation. Mechanical stimulation significantly provokes cellular outgrowth and long-term chondrogenic maturation at the mRNA level, whereas histology depicts immature neotissue where typical cartilage matrix is expected.  相似文献   

19.
20.
OBJECTIVE: AG-041R, a novel indolin-2-one derivative, has recently been demonstrated to induce systemic hyaline cartilage hyperplasia in rats. The aim of this study was to characterize its anabolic actions on chondrocytes. DESIGN: Chondrocytes were isolated from knee joints of 5-week-old SD rats. Effects of AG-041R on cartilage matrix synthesis were examined by measuring [(35)S]sulfate incorporation into proteoglycans, Alcian blue staining, and Northern blotting of cartilage matrix genes. ALP activity, mineral deposition and the expression of markers for hypertrophic chondrocytes, were assessed for terminal differentiation of chondrocytes. Roles of endogenous TGF-beta/BMPs and MEK1/Erk signaling in the action of AG-041R were investigated using the neutralizing soluble receptors and the MEK1 inhibitor. RESULTS: AG-041R accelerated proteoglycan synthesis assessed by both [(35)S]sulfate incorporation and Alcian blue stainable extracellular matrix accumulation. It also up-regulated the gene expression of type II collagen and aggrecan, as well as tenascin, a marker for articular cartilage. In contrast, AG-041R suppressed ALP activity, mineralization, and the gene expression of type X collagen and Cbfa1, indicating that AG-041R prevents chondrocyte terminal differentiation. AG-041R increased in BMP-2 mRNA, and the neutralizing soluble receptor for BMPs reversed the stimulatory effects of AG-041R on cartilage matrix synthesis. Moreover, AG-041R activated MEK1/Erk pathway, which was revealed to prevent chondrocyte terminal differentiation. CONCLUSION: AG-041R stimulates cartilage matrix synthesis without promoting terminal differentiation in rat articular chondrocytes, which is mediated at least in part by endogenous BMPs and Erk. The data demonstrates that AG-041R has a potential to be a useful therapeutic agent for articular cartilage disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号