首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The effect of processing conditions on the microstructure of three blends of 30, 40, and 50% high-melting fraction [Mettler dropping point (MDP)=47.5°C] in the lowmelting fraction (MDP=16.5°C) of milk fat was studied. The effect of cooling and agitation rates, crystallization temperature, chemical composition of the blends, and storage time on crystalline microstructure (number, size, distribution, etc.) was investigated by confocal laser scanning microscopy (CLSM). To improve resolution, a mix of Nile blue and Nile red dyes was dissolved in the melted samples in proportions that did not modify the nucleation kinetics. Samples were then crystallized by cooling (0.2 or 5.5°C/min) to crystallization temperature (25, 27.5, and 30°C). After 2 h at crystallization temperature, a slurry was placed on a microscope slide and samples were stored 24 h at 10°C. During this period, more material crystallized. Slowly crystallized samples (0.2°C/min) formed different structures from rapidly crystallized samples (5.3°C/min). Crystals were sometimes diffuse and hard to distinguish from the liquid. Samples were darker as a result of this solid-mass distribution. However, rapidly crystallized samples had well-defined crystals and seemed to be separated by a distinct liquid phase. These crystals were not in touch with each other as was the case for slowly crystallized samples. Higher agitation rates led to smaller crystal size due to enhanced nucleation. Larger crystals were formed when crystallization occurred at higher temperatures. Storage time resulted in an increase of crystal size. Larger crystal size and structures with more evident links had a more elastic behavior with higher elastic modulus E’.  相似文献   

2.
The effect of processing conditions on the crystallization of blends of a high-melting milk fat fraction and sunflower oil was investigated. Two cooling rates were selected for all studies: 0.1°C/min (slow rate) and 5.5°C/min (fast rate). Blends were crystallized in two conditions: (i) with agitation in an 80-mL crystallizer (dynamic), and (ii) on a microscope slide without agitation (static). The selected crystallization temperatures were 25, 30, and 35°C for both cooling rates. Photographs of the development of crystals with time were taken in both static and dynamic conditions, and the crystal size distribution was determined at the moment that the laser signal reached its peak. Photographs showed that when samples were cooled slowly, crystals had a more regular boundary, appeared to be more densely arranged, and were larger. In dynamic conditions, crystal sizes were smaller and the background contained numerous small crystals, which were not found in statically crystallized samples. All images showed that crystals were not single crystals, but grew by accretion.  相似文献   

3.
The effect of processing conditions on rheological behavior of three blends of 30, 40, and 50% of high-melting fraction [melting point measured as Mettler dropping point (MDP)=47.5°C] in low-melting fraction (MDP=16.5°C) of milk fat was studied. The effects of cooling and agitation rates, crystallization temperature, chemical composition of the blends, and time of storage on complex, storage and loss moduli were investigated by dynamic mechanical analysis (DMA). Compression tests were performed on samples using frequency values within the linear viscoelastic range (1 to 10 Hz). Loss modulus was, on average, 10 times lower than elastic modulus and was generally not affected by processing conditions. Samples showed a more solid-like behavior that was better described by storage modulus. Storage modulus varied with all processing conditions used in this study, and even for the same solid fat content, different rheological properties were found. Storage and complex modulus increased with temperature of crystallization (25 to 30°C), even though solid fat contents of samples measured after 24 h at 10°C were the same. Moduli were higher for samples crystallized at slow cooling rate, decreased with agitation rate, and were lower for the 30–70% blend at all processing conditions used. Storage moduli also increased with storage time. Shear storage modulus was calculated from the DMA experimental data, and the results were in agreement with the values reported in literature for butter systems. Fractal dimensions calculated for these systems showed a significant decrease as agitation rate increased in agreement with the softening effect reported for working of butter.  相似文献   

4.
Syndiotactic polystyrene/highly‐impact polystyrene (sPS/HIPS) blends were prepared with a twin‐screw extruder. Differential scanning calorimetry and wide angle X‐ray diffractometry were used to investigate the effect of the maximal melting temperature, the content of HIPS and cooling rates on the melting and crystallization behavior and crystal forms of sPS. The experimental results indicated that the addition of low content of HIPS induced the formation of more α‐crystal, whereas the addition of high content of HIPS favored the formation of β‐crystal for sPS/HIPS blends crystallized dynamically from low melting temperature. Both sPS and its blends produced only β‐crystal as crystallized from high melting temperature. The crystallization temperatures of sPS and its blends decreased as the melting temperature increased, favoring the formation of β‐crystal. Higher temperature of sPS crystallization favored the formation of more content of α‐crystal while lower temperature of sPS crystallization produced more content of β‐crystal. Cooling rates showed no significant effect on the crystal form of sPS and its blends, but influenced the melting behavior of both sPS and its bends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3353–3361, 2007  相似文献   

5.
Miscibility and crystallization behavior have been investigated in blends of poly(butylene succinate) (PBSU) and poly(ethylene oxide) (PEO), both semicrystalline polymers, by differential scanning calorimetry and optical microscopy. Experimental results indicate that PBSU is miscible with PEO as shown by the existence of single composition dependent glass transition temperature over the entire composition range. In addition, the polymer-polymer interaction parameter, obtained from the melting depression of the high-Tm component PBSU using the Flory-Huggins equation, is composition dependent, and its value is always negative. This indicates that PBSU/PEO blends are thermodynamically miscible in the melt. The morphological study of the isothermal crystallization at 95 °C (where only PBSU crystallized) showed the similar crystallization behavior as in amorphous/crystalline blends. Much more attention has been paid to the crystallization and morphology of the low-Tm component PEO, which was studied through both one-step and two-step crystallization. It was found that the crystallization of PEO was affected clearly by the presence of the crystals of PBSU formed through different crystallization processes. The two components crystallized sequentially not simultaneously when the blends were quenched from the melt directly to 50 °C (one-step crystallization), and the PEO spherulites crystallized within the matrix of the crystals of the preexisted PBSU phase. Crystallization at 95 °C followed by quenching to 50 °C (two-step crystallization) also showed the similar crystallization behavior as in one-step crystallization. However, the radial growth rate of the PEO spherulites was reduced significantly in two-step crystallization than in one-step crystallization.  相似文献   

6.
Thermal analysis of solution precipitated blends of two crystallizable polymers, poly(vinylidene fluoride) (PVDF) and copoly(chlorotrifluorethylene-vinylidene fluoride) (copoly(CTFE-VDF)), has been carried out to study the transition temperatures, crystallinity, and crystallization rates. PVDF crystallizes over the whole blend composition either during precipitation from solution or upon cooling from the melt. The high degree of crystallinity attained, higher than in PVDF by itself, suggests the occurrence of partial PVDF-copolymer cocrystallization. The melt crystallization temperature, decreasing with cooling rate, is lower in PVDF-rich blends than for lean blends. However, the heat of crystallization increases with cooling rate, suggesting that the crystal composition depends on crystallization rate. No significant melting temperature depression due to blending was observed. However, the blends glass transition (Tg) changes linearly with composition, but less than expected by any mixing rule applicable to compatible systems. Annealing of the blends above Tg results in an additional crystalline phase consisting mainly of the copolymer. The amount of these crystals increases with PVDF content, due to partial cocrystallization and kinetic effects. The addition of the copolymer to PVDF results in a volume-filling spherulitic structure consisting of spherulites which decrease in size with increasing copolymer content.  相似文献   

7.
The non‐isothermal and isothermal crystallizations of extruded poly(l ‐lactic acid) (PLLA) blends with 10, 20 and 30 wt% poly(ethylene glycol) (PEG) were investigated with differential scanning calorimetry. The formation of α‐form crystals in the blend films was verified using X‐ray diffraction and an increase in crystallinity indexes using Fourier transformation infrared spectroscopy. Crystallization and melting temperatures and crystallinity of PLLA increased with decreasing cooling rate (CR) and showed higher values for the blends. Although PLLA crystallized during both cooling and heating, after incorporation of PEG and with CR = 2 °C min?1 its crystallization was completed during cooling. Increasingly distinct with CR, a small peak appeared on the lower temperature flank of the PLLA melting curve in the blends. A three‐dimensional nucleation process with increasing contribution from nuclei growth at higher CR was verified from Avrami analysis, whereas Kissinger's method showed that the diluent effect of 10 and 20 wt% PEG in PLLA decreased the effective energy barrier. During isothermal crystallization, crystallization half‐time increased with temperature (Tic) for the blends, decreased with PEG content and was lower than that of pure PLLA. In addition, the Avrami rate constants were significantly higher than those of pure PLLA, at the lower Tic. Different crystal morphologies in the PLLA phase were formed, melting in a broader and slightly higher Tm range than pure PLLA. The crystallization activation energy of PLLA decreased by 56% after the addition of 10 wt% PEG, increasing though with PEG content. Finally, PEG/PLLA blends presented improved flexibility and hydrophilicity. © 2019 Society of Chemical Industry  相似文献   

8.
Crystallization behavior, structural development and morphology evolution of a series of poly (ethylene glycol)-poly(ε-caprolactone) diblock copolymers (PEG-b-PCL) were investigated via differential scanning calorimetry (DSC), X-ray diffraction (XRD) and atomic force microscopy (AFM). In these copolymers, both blocks were crystallizable and biocompatible. The mutual effects between the PEG and PCL blocks were significant, leading to the obvious block composition dependence of the crystallization behavior and morphology of the PEG-b-PCL copolymers. The relative block length determined which block crystallized first. The temperature-dependent XRD measurements confirmed which block crystallized first from the copolymer during the cooling procedure. Single crystals of the PCL and PEG homopolymers and the PEG-b-PCL copolymers were obtained and observed by AFM. The block (PCL or PEG) crystallized first would determine the crystal morphology. The block crystallized later acted as a solvent, which was advantageous to forming perfect single crystals of the whole block copolymers.  相似文献   

9.
Hydrogenated cottonseed oil (HCSO) is commonly used as a β′-stable fat in margarines and shortenings. In the present study, the crystallization behavior of HCSO is altered via dilution, agitation, tempering regime, and the addition of an emulsifier [polyglycerol polyricinoleate (PgPr)]. Key properties assessed include crystal morphology (with polarized light microscopy), polymorphic behavior (with X-ray diffraction), and crystallization kinetics (with DSC). It is demonstrated that on considerable dilution with canola oil (4% w/w), HCSO can be crystallized in the β′ or β polymorph with associated changes in crystal morphology, depending on tempering regime. Crystallization from the melt to 25°C results in the β′-form, as there is insufficient supercooling to form the β polymorph but enough to form the metastable β′. With cooling from the melt to 5°C, there is adequate supercooling for the δ polymorph to form, with the presence of the canola oil facilitating the transformation toward this stable phase. Static vs. crystallization under agitation does not lead to visible changes in either polymorphic behavior or crystal morphology. However, there is extensive secondary nucleation and growth as a result of crystals breaking off accreting agglomerates. The presence of PgPr, added as a crystal modifier, does not affect the final crystal polymorph or morphology, except under one set of conditions—crystallization from the melt to 5°C with agitation, whereby it considerably alters crystallization behavior.  相似文献   

10.
Kinetics of crystallization of hydrogenated sunflowerseed oil was studied by means of an optical method. Two different aspects were examined: the effects of preheating of the molten liquid on induction time of isothermal crystallization and the effects of cooling rate on the crystallization behavior. Induction time for crystallization was markedly dependent on the crystallization temperature and the cooling rate selected. Morphology, polymorphism and chemical composition of the crystals were examined. At all crystallization temperatures, β′-form was found for the first occurring crystals. Long spacings were also similar in all cases and corresponded to a double chainlength arrangement. The chemical composition of the crystals showed no differences at either cooling rate. However, the melting behavior was different. At a slow cooling rate, fractionation occurred, and differential scanning calorimetry diagrams had a broad second endotherm with three peaks, none of which were completely resolved. The polymorphic transformation rate from β′ to β was slower when induction times were longer.  相似文献   

11.
汪达  王倩  张建胜 《化工学报》2018,69(5):2183-2190
采用单热电偶在线观察系统(SHTT)、图像分析程序等研究等温过程中温度和连续冷却过程中冷却速率对于人工配制灰渣结晶行为的影响,通过计算结晶动力学参数分析其析晶机理,并采用FactSage软件预测晶体类型。实验结果表明,等温过程中,温度降低,结晶所需时间先减小后增大,晶体尺寸减小,结晶比例先增大再稳定最后减小,不同温度区间生成晶体类型不同,导致结晶比例在某些温度出现较大的变化。连续冷却过程中,冷却速率增大,初始结晶温度降低,晶体由块状向颗粒状转变,结晶比例先稳定后减小,由于析出的晶体类型不同,结晶比例出现多个稳定区间,达到临界冷却速率后熔渣全部凝固为玻璃态,无晶体析出。由DSC得到的熔渣结晶放热曲线与SHTT得到的结果吻合较好。  相似文献   

12.
研究了硝酸铵和氯化钾复分解法制取氯化铵的冷却结晶过程,考察了降温速率、搅拌速率、晶种添加量等因素对氯化铵产品的纯度及晶体粒度分布的影响。研究结果表明,采取适宜的降温速率、搅拌速率及适宜的晶种添加能有效地改善氯化铵晶体粒度,提高分离效果;氯化铵冷却结晶适宜操作条件为:降温速率为0.3 K/min、搅拌速率为350 r/min、添加晶种粒度为150~180 μm、添加晶种量为1.88%,在此条件下制得的氯化铵产品晶体粒度均一性好,平均粒径更大。  相似文献   

13.
Simulating effluent from chlorine dioxide generators, the crystallization kinetics of sodium sesquisulfate from 4.5 mol/L sulfuric acid were studied under cooling conditions. The crystal growth and nucleation rates were determined using the population balance concept and the crystal size distribution from a continuous mixed suspension mixed product removal (MSMPR) crystallizer. Crystallization temperatures studied were 45, 50, 55 and 60°C. The crystal growth and nucleation rate data were correlated to supersaturation and temperature. Nucleation rate was found to be a function of suspension density (secondary nucleation). The activation energies for nucleation and growth are reported.  相似文献   

14.
对二甲苯悬浮熔融结晶动力学   总被引:2,自引:2,他引:0       下载免费PDF全文
陈亮  肖剑  谢在库  于建国 《化工学报》2009,60(11):2787-2791
结晶法是工业上生产对二甲苯的主要方法之一。现有对二甲苯结晶动力学参数均单纯由结晶母液的温度和浓度变化通过非线性优化法而获得,未检测对二甲苯的晶体粒度数据,因而其准确性难以得到保证。本文利用超声在线粒度仪(OPUS)检测对二甲苯晶体的粒度分布,通过添加晶种的间歇悬浮熔融结晶实验,应用矩量变换法测定82%(质量)对二甲苯-间二甲苯体系中的对二甲苯结晶动力学。利用最小二乘法对动力学实验数据进行多元线性回归后得到了对二甲苯结晶动力学方程,研究结果表明,在对二甲苯悬浮熔融结晶过程中,溶液相对过饱和度对对二甲苯晶体成核速率的影响大于对晶体生长速率的影响,搅拌速率对成核过程影响明显,而晶浆悬浮密度对成核速率的影响不大。  相似文献   

15.
Crystallization of L-ornithine-L-aspartate (LOLA) by drowning out was performed for the production of the anhydrous form of LOLA. The needle-like LOLA crystals were formed and spherically agglomerated during precipitation in a semibatch crystallizer. The primary crystal size in the agglomerate remains unchanged after completion of the crystallization. Therefore, the agglomeration process of primary crystals played an important role for controlling LOLA crystal size. The agglomeration of LOLA crystals was governed by not only the physico-chemical parameters such as the temperature and feed concentration, but also the hydrodynamic parameters such as agitation speed and feeding rate. The crystal size and the shape have been shown to be important factors in product impurity and flowability. Thus, the optimum condition of LOLA crystallization process by drowning-out could be obtained.  相似文献   

16.
The kinetics of crystallization – nucleation and crystal growth – was determined for a seeded batch cooling process. Several experiments were done utilizing always the same condition: initial concentration, seed mass and size distribution, and cooling rate. From one experiment to other the agitation speed was varied. As the utilized reactor is able to measure torque of the impeller, the power dissipated in agitation was monitored during the crystallization, as well as reactor temperature and turbidity of the suspension. Turbidity monitoring and the measurement of particle size distribution from seeds and final product allowed obtaining the evolution of the second moment of the particles during the crystallization. The crystallization process was modeled utilizing the Method of Moments and the nucleation and crystal growth kinetics were obtained from least-square minimization of calculated second moments of the crystals. A crystal growth kinetic was determined and the secondary nucleation rate was described as a function of dissipated power and as functions of impeller tip speed. Additional experiments were done, in which cooling rate, seed mass and seed size were varied. The calculated kinetics could satisfactorily describe the results of the additional experiments, corroborating the quality of the modeling.  相似文献   

17.
The crystallization behavior and structure of mixtures of a high behenic acid stabilizer (HBS) in peanut oil, high oleic safflower oil and sesame oil were studied in order to elucidate the mechanism behind liquid oil stabilization. Both the chemical composition of the oil and cooling rate influenced the crystallization behavior and structure of HBS. The critical gelation concentration of HBS ranged from 6.5% for peanut oil crystallized at 3 °C/min to 11% for sesame oil mixtures crystallized at 0.6 °C/min. The free energy of nucleation (ΔG) was the highest for sesame oil (142 kJ/mol) followed by high oleic safflower oil (75.8 kJ/mol) and peanut oil (15.9 kJ/mol). The HBS peanut oil mixture displayed the highest storage modulus (G′) under both cooling rates studied. In general, HBS-oil mixtures crystallized at a higher cooling rate exhibited high SFC values, lower crystallization temperatures and a predominance of the β′ polymorph, and they had a microstructure characterized by uniformly sized spherulites. In contrast, slow cooling rates led to higher critical gelation concentrations of HBS, lower SFC, fractionation of higher melting and lower melting fractions, a more stable polymorphic form β and a wide range of spherulite sizes.  相似文献   

18.
Four blends of poly(hydroxybutyrate) (PHB) and poly(butylene succinate) (PBSU), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHB/PBSU ranging from 80/20 to 20/80 by co-dissolving the two polyesters in N,N-dimethylformamide and casting the mixture. Differential scanning calorimetry (DSC) and optical microscopy (OM) were used to probe the miscibility of PHB/PBSU blends. Experimental results indicated that PHB showed some limited miscibility with PBSU for PHB/PBSU 20/80 blend as evidenced by the small change in the glass transition temperature and the depression of the equilibrium melting point temperature of the high melting point component PHB. However, PHB showed immiscibility with PBSU for the other three blends as shown by the existence of unchanged composition independent glass transition temperature and the biphasic melt. Nonisothermal crystallization of PHB/PBSU blends was investigated by DSC using various cooling rates from 2.5 to 10 °C/min. During the nonisothermal crystallization, despite the cooling rates used two crystallization peak temperatures were found for PHB/PBSU 40/60 and 60/40 blends, corresponding to the crystallization of PHB and PBSU, respectively, whereas only one crystallization peak temperature was observed for PHB/PBSU 80/20 and 20/80 blends. However, it was found that after the nonisothermal crystallization the crystals of PHB and PBSU actually co-existed in PHB/PBSU 80/20 and 20/80 blends from the two melting endotherms observed in the subsequent DSC melting traces, corresponding to the melting of PHB and PBSU crystals, respectively. The subsequent melting behavior was also studied after the nonisothermal crystallization. In some cases, double melting behavior was found for both PHB and PBSU, which was influenced by the cooling rates used and the blend composition.  相似文献   

19.
Crystallization of polypropylene (PP) in the blends of PP with styrene–ethylene butylene–styrene triblock copolymer (SEBS) is studied through differential thermal analysis (DTA) and X-ray diffraction measurements. Analysis of crystallization exotherm peaks in terms of crystallization nucleation and growth rates, crystallite size distribution, and crystallinity revealed differences in the morphology of PP component in the blend in the different regions of blend composition. Crystallinity determined by X-ray diffraction and DTA showed identical variations with blend composition. Variations in tensile properties of these blends with blend composition are also reported. Correlations of the various tensile properties with the crystallization parameters, viz., the crystallinity and crystallite size distribution, are presented, which confirm the influence of crystallization of PP component on the tensile properties of these blends.  相似文献   

20.
Development of specific properties of lard, a well-known edible animal by-product and one which plays an important role in Chinese-style foods, was studied by means of multiple-step crystalline fractionation. A method for monitoring the crystallization temperature and crystallization time of lard by spectral turbidity was also studied. The capabilities of the proposed method were experimentally demonstrated through recovery of the fat crystal mass. Six significant changes in turbidity spectra, which correspond to the formation of fat crystals, were observed at various temperatures while cooling the melted lard from 50°C to the final vessel temperature at a constant cooling (0.5°C/min) and agitator rate (50 rpm). Crystallization time for each lard fraction was determined while the peak in turbidity was observed in the process of cooling at a specific temperature. Determination of crystallization time by means of turbidimetry correlated with the increase in deposition of fat crystals. No significant increase in fat crystal mass was observed when cooling prolongation after the turbidity peak for the sample was measured. Attributes of lard fractions were characterized by iodine value, saponification value, fatty acid composition, and melting profile of crystallization temperature. Based on the results, turbidimetry might be suggested as a fast and inexpensive method for monitoring the crystallization temperature and crystallization time for the routine crystalline fractionation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号