首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Old age, adiposity, and metabolic disorders are known as risk factors for chronic tendinopathy, which is a common problem in both athletes and the general population. However, the importance of these influencing factors has not yet been well understood. This study investigated alterations in gene expression and histology of Achilles tendons of young (10 weeks) and old (100 weeks) rats bred for low (low capacity runners, LCR) and high (high capacity runners, HCR) intrinsic aerobic exercise capacity. In this rat model, LCR displayed a phenotype of reduced exercise capacity, higher body weight, and metabolic dysfunctions compared to HCR. We hypothesized that the risk factors for tendinopathy in old LCR could lead to more pronounced impairments in Achilles tendon tissue. In quantitative real-time PCR (qPCR), age-related downregulation of tenocyte markers e.g., tenomodulin, genes related to matrix modeling and remodeling (e.g., collagens, elastin, biglycan, fibronectin, tenascin C) as well as transforming growth factor beta 3 (Tgfb3) have been detected. Inflammation marker cyclooxygenase 2 (Cox2) was downregulated in old rats, while microsomal prostaglandin E synthase 2 (Ptges2) was upregulated in old HCR and old LCR. In all groups, interleukin 6 (Il6), interleukin 1 beta (Il1b), and tumor necrosis factor alpha (Tnfa) showed no significant alteration. In histological evaluation, tendons of old rats had fewer and more elongated tenocyte nuclei than young rats. Even though a higher content of glycosaminoglycans, a sign of degeneration, was found in old HCR and LCR, no further signs of tendinopathy were detectable in tendons of old rats by histological evaluation. Low intrinsic aerobic exercise capacity and the associated phenotype did not show significant effects on gene expression and tendon histology. These findings indicate that aging seems to play a prominent role in molecular and structural alterations of Achilles tendon tissue and suggests that other risk factors associated with intrinsic aerobic exercise capacity are less influential in this rat model.  相似文献   

2.
Embedding multiple pharmaceutical drugs into poly(lactic-co-glycolic acid) (PLGA) nanofibers is known to improve the regeneration of the Achilles tendon upon implantation after injury and rapidly restore post-surgery activity. In this study, an implantable material comprising celecoxib, collagen, bupivacaine, and PLGA (CCBP) is prepared by electrospinning. Its in vitro/vivo drug discharge behaviors are evaluated, and its efficacy in tendon regeneration is investigated in a rat model. The regeneration capacity of the wounded tendon is also compared with that of a doxycycline-collagen-bupivacaine-PLGA (DCBP) combination. The results show that, relative to the primary PLGA nanofibers, the pharmaceutical-embedded nanofibers have thinner fiber diameters and higher hydrophilicity. The drug-eluting nanofibers also offer a sustained release of celecoxib for at least 30 d in vitro and 28 d in vivo. Achilles tendons regenerated using the CCBP combination nanofibers demonstrate a significantly higher maximum load-to-failure than normal tendons and those repaired using the DCBP combination. Additionally, the expression of growth factors and composition of collagen I induced by the CCBP combination are superior to those induced by the DCBP combination. The results suggest that the CCBP combination is a promising scaffold for the repair of ruptured Achilles tendons.  相似文献   

3.
Healing of ruptured tendons remains a clinical challenge because of its slow progress and relatively weak mechanical force at an early stage. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have therapeutic potential for tissue regeneration. In this study, we isolated EVs from adipose-derived stem cells (ADSCs) and evaluated their ability to promote tendon regeneration. Our results indicated that ADSC-EVs significantly enhanced the proliferation and migration of tenocytes in vitro. To further study the roles of ADSC-EVs in tendon regeneration, ADSC-EVs were used in Achilles tendon repair in rabbits. The mechanical strength, histology, and protein expression in the injured tendon tissues significantly improved 4 weeks after ADSC-EV treatment. Decorin and biglycan were significantly upregulated in comparison to the untreated controls. In summary, ADSC-EVs stimulated the proliferation and migration of tenocytes and improved the mechanical strength of repaired tendons, suggesting that ADSC-EV treatment is a potential highly potent therapeutic strategy for tendon injuries.  相似文献   

4.
At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2) on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs) were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control), and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2) were used to reconstruct the anterior cruciate ligament (ACL) in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N) (P = 0.041 and P = 0.001, respectively). In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3) was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4) or control groups (12.4 ± 6.0) (p = 0.036 and 0.001, respectively). Based on the histological findings, there was an increased amount of perpendicular collagen fibers formed between the tendon and bone in the bMSCs+Lv-Control and bMSCs+Lv-BMP-2 group, compared with the gastrocnemius tendons. The proliferation of cartilage-like cells and the formation of fibrocartilage-like tissue were highest within the bone tunnels in the bMSCs+Lv-BMP-2 group. These results suggest that this lentivirus can be used to efficiently infect bMSCs with BMP-2. Furthermore, tendons wrapped by bMSCs+Lv-BMP-2 improved tendon–bone healing.  相似文献   

5.
To test the hypothesis that a platelet-rich plasma (PRP) plus bioactive glass (BG) mixture could shorten the tendon-bone healing process in rotator cuff tendon repair, thirty mature male New Zealand white rabbits were randomly divided into three groups, Control, PRP, and PRP + BG. All groups underwent a surgical procedure to establish a rotator cuff tendon healing model. Mechanical examinations and histological assays were taken to verify the adhesion of the tendon-bone. Real-time PCR was adopted to analyze Bone Morphogenetic Protein-2 (BMP-2). The maximum load-to-failure value in mechanical examinations was significantly higher in the PRP + BG group than that in the control group after six weeks (Control 38.73 ± 8.58, PRP 54.49 ± 8.72, PRP + BG 79.15 ± 7.62, p < 0.001), but it was not significantly different at 12 weeks (PRP 74.27 ± 7.74, PRP + BG 82.57 ± 6.63, p = 0.145). In histological assays, H&E (hematoxylin-eosin) staining showed that the interface between the tendon-bone integration was much sturdier in the PRP + BG group compared to the other two groups at each time point, and more ordered arranged tendon fibers can be seen at 12 weeks. At six weeks, the mRNA expression levels of BMP-2 in the PRP + BG group were higher than those in the other groups (PRP + BG 0.65 ± 0.11, PRP 2.284 ± 0.07, Control 0.12 ± 0.05, p < 0.05). However, there was no significant difference in the mRNA expression levels of BMP-2 among the three groups at 12 weeks (p = 0.922, 0.067, 0.056). BMP-2 levels in PRP and PRP+BG groups were significantly lower at 12 weeks compared to six weeks (p = 0.006, <0.001).We found that the PRP + BG mixture could enhance tendon-bone healing in rotator cuff tendon repair.  相似文献   

6.
A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.  相似文献   

7.
8.
A central part of the complement system, the anaphylatoxin C5a was investigated in this study to learn its effects on tenocytes in respect to understanding the potential expression of other crucial complement factors and pro-inflammatory mediators involved in tendinopathy. Human hamstring tendon-derived tenocytes were treated with recombinant C5a protein in concentrations of 25 ng/mL and 100 ng/mL for 0.5 h (early phase), 4 h (intermediate phase), and 24 h (late phase). Tenocytes survival was assessed after 24 h stimulation by live-dead assay. The gene expression of complement-related factors C5aR, the complement regulatory proteins (CRPs) CD46, CD55, CD59, and of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 was monitored using qPCR. Tenocytes were immunolabeled for C5aR and CD55 proteins. TNFα production was monitored by ELISA. Tenocyte survival was not impaired through C5a stimulation. Interestingly, the gene expression of C5aR and that of the CRPs CD46 and CD59 was significantly reduced in the intermediate and late phase, and that of TNFα only in an early phase, compared to the control group. ELISA analysis indicated a concomitant not significant trend of impaired TNFα protein synthesis at 4 h. However, there was also an early significant induction of CD55 and CD59 mediated by 25 ng/mL anaphylatoxin C5a. Hence, exposure of tenocytes to C5a obviously evokes a time and concentration-dependent response in their expression of complement and pro-inflammatory factors. C5a, released in damaged tendons, might directly contribute to tenocyte activation and thereby be involved in tendon healing and tendinopathy.  相似文献   

9.
Tendinopathies are painful, disabling conditions that afflict 25% of the adult human population. Filling an unmet need for realistic large-animal models, we here present an ovine model of tendon injury for the comparative study of adult scarring repair and fetal regeneration. Complete regeneration of the fetal tendon within 28 days is demonstrated, while adult tendon defects remained macroscopically and histologically evident five months post-injury. In addition to a comprehensive histological assessment, proteome analyses of secretomes were performed. Confirming histological data, a specific and pronounced inflammation accompanied by activation of neutrophils in adult tendon defects was observed, corroborated by the significant up-regulation of pro-inflammatory factors, neutrophil attracting chemokines, the release of potentially tissue-damaging antimicrobial and extracellular matrix-degrading enzymes, and a response to oxidative stress. In contrast, secreted proteins of injured fetal tendons included proteins initiating the resolution of inflammation or promoting functional extracellular matrix production. These results demonstrate the power and relevance of our novel ovine fetal tendon regeneration model, which thus promises to accelerate research in the field. First insights from the model already support our molecular understanding of successful fetal tendon healing processes and may guide improved therapeutic strategies.  相似文献   

10.
The interfascicular matrix (IFM) binds tendon fascicles and contains a population of morphologically distinct cells. However, the role of IFM-localised cell populations in tendon repair remains to be determined. The basement membrane protein laminin-α4 also localises to the IFM. Laminin-α4 is a ligand for several cell surface receptors, including CD146, a marker of pericyte and progenitor cells. We used a needle injury model in the rat Achilles tendon to test the hypothesis that the IFM is a niche for CD146+ cells that are mobilised in response to tendon damage. We also aimed to establish how expression patterns of circulating non-coding RNAs alter with tendon injury and identify potential RNA-based markers of tendon disease. The results demonstrate the formation of a focal lesion at the injury site, which increased in size and cellularity for up to 21 days post injury. In healthy tendon, CD146+ cells localised to the IFM, compared with injury, where CD146+ cells migrated towards the lesion at days 4 and 7, and populated the lesion 21 days post injury. This was accompanied by increased laminin-α4, suggesting that laminin-α4 facilitates CD146+ cell recruitment at injury sites. We also identified a panel of circulating microRNAs that are dysregulated with tendon injury. We propose that the IFM cell niche mediates the intrinsic response to injury, whereby an injury stimulus induces CD146+ cell migration. Further work is required to fully characterise CD146+ subpopulations within the IFM and establish their precise roles during tendon healing.  相似文献   

11.
By depositing scent marks on flowers, bees reduce both the search time and the time spent with the handling of nonrewarding flowers. They thereby improve the efficiency of foraging. Whereas in honey bees the source of these scent marks is unknown, it is assumed to be the tarsal glands in bumble bees. According to histological studies, however, the tarsal glands lack any openings to the outside. Foragers of the stingless bee Melipona seminigra have previously been shown to deposit an attractant pheromone at sugar solution feeders, which is secreted at the tips of their tarsi. Here we show that the claw retractor tendons have specialized glandular epithelia within the femur and tibia of all legs that produce this pheromone. The secretion accumulates within the hollow tendon, which also serves as the duct to the outside, and is released from an opening at the base of the unguitractor plate. In choice experiments, M. seminigra was attracted by feeders baited with pentane extracts of the claw retractor tendons in the same way as it was attracted by feeders previously scent marked by foragers. Our results resolve the seeming contradiction between the importance of foot print secretions and the lack of openings of the tarsal glands.  相似文献   

12.
Human exposure to methylmercury (MeHg) is currently high in regions such as the Amazon. Understanding the molecular changes associated with MeHg-induced neurotoxicity and the crosstalk with the periphery is essential to support early diagnoses. This work aimed to evaluate cellular and molecular changes associated with behavioral alterations in MeHg acute exposure and the possible changes in extracellular vesicles (EVs) number and S100β content. Adults male Wistar rats were orally treated with 5 mg/kg for four days. Behavioral performance, molecular and histological changes in the cerebellum, and plasma EVs were assessed. MeHg-intoxicated animals performed significantly worse in behavioral tests. MeHg increased the number of GFAP+ cells and GFAP and S100β mRNA expression in the cerebellum but no change in NeuN+ or IBA-1+ cells number was detected. The number of exosomes isolated from plasma were decreased by the metal. S100B mRNA was detected in circulating plasma EVs cargo in MeHg exposure. Though preliminary, our results suggest astrocytic reactivity is displaying a protective role once there was no neuronal death. Interestingly, the reduction in exosomes number could be a new mechanism associated with MeHg-induced neurotoxicity and plasma EVs could represent a source of future biomarkers in MeHg intoxication.  相似文献   

13.
Defect of the tendon sheath after tendon injury is a main reason for tendon adhesions, but it is a daunting challenge for the biomimetic substitute of the tendon sheath after injury due to its multi-layer membrane-like structure and complex biologic functions. In this study, a multi-layer membrane with celecoxib-loaded poly(l-lactic acid)-polyethylene glycol (PELA) electrospun fibrous membrane as the outer layer, hyaluronic acid (HA) gel as middle layer, and PELA electrospun fibrous membrane as the inner layer was designed. The anti-adhesion efficacy of this multi-layer membrane was compared with a single-layer use in rabbit flexor digitorum profundus tendon model. The surface morphology showed that both PELA fibers and celecoxib-loaded PELA fibers in multi-layer membrane were uniform in size, randomly arrayed, very porous, and smooth without beads. Multi-layer membrane group had fewer peritendinous adhesions and better gliding than the PELA membrane group and control group in gross and histological observation. The similar mechanical characteristic and collagen expression of tendon repair site in the three groups indicated that the multi-layer membrane did not impair tendon healing. Taken together, our results demonstrated that such a biomimetic multi-layer sheath could be used as a potential strategy in clinics for promoting tendon gliding and preventing adhesion without poor tendon healing.  相似文献   

14.
目的探讨神经肽P物质(Substance P,SP)对高氧损伤早产大鼠肺泡Ⅱ型上皮细胞(Alveolar epithelial celltypeⅡ,AECⅡ)氧化/抗氧化状态的影响。方法将分离培养的原代早产大鼠AECⅡ随机分为4组:空气组(将细胞置5%CO2、21%O2的孵箱中)、高氧组(将细胞置5%CO2、95%O2的密闭氧仓中)、高氧SP组(细胞培养液中预先加入5×10-8mol/L的SP,再置高氧中)和高氧SP受体拮抗剂组(细胞培养液中预先加入5×10-8mol/L的SP和5×10-7mol/L的L703.606,再置高氧中),各组细胞培养24 h后,镜下观察细胞形态的变化;MTT法检测细胞的增殖活力;流式细胞术检测细胞周期;JC-1探针法检测细胞凋亡早期线粒体膜电位的变化;化学比色法检测细胞丙二醛(Malondialdehyde,MDA)含量、总抗氧化能力(Total antioxidative capacity,TAOC)及超氧化物歧化酶(Superoxidedismutase,SOD)的活力。结果与空气组比较,高氧组AECⅡ的增殖活力、S+G2期细胞比例、线粒体膜电位、SOD活力和TAOC均明显下降(P<0.01),MDA含量明显升高(P<0.01);与高氧组比较,高氧SP组AECⅡ的增殖活力、S+G2期细胞比例、线粒体膜电位、SOD活力和TAOC均明显升高(P<0.01),而MDA含量明显下降(P<0.01),SP受体拮抗剂可阻断该效应。结论 SP可明显减轻高氧导致的早产大鼠AECⅡ的氧化损伤,增强细胞的抗氧化能力,进而起到促进细胞增殖的作用。  相似文献   

15.
16.
The total volume change included gel and surrounded water with the swelling of five types of speherical cross-linked dextran (Sephadex) that are either nonionic (G) or possess one of four different ionic groups in the same molecular skeleton: CM: sodium carboxymethyl, SP: sodium sulphopropyl, DEAE: diethylaminoethyl chloride, and QAE: diethyl-(2-hydroxypropyl) aminoethyl chloride. All have been studied by dilatometry. The total volume decreased with the swelling of all Sephadexes. The maximum changes of total volume with the swelling in water were all negatives of CM, G, SP, (DEAE, QAE), which decrease in that order. These values did not depend on the concentration of sodium chloride and were closely related to the maximum heats of swelling. Total volume changes occurred by the dissociation of the ionic group of dextran derivatives that subtracted the total volume change due to hydration of Sephadex skeleton from the total volume change: ?21.6 ± 3.1 μL mmol?1 for CM, ?2.8 ± 8.0 μL mmol?1 for SP, +13.2 ± 4.4 μL mmol?1 for DEAE, and +15.4 ± 4.6 μL mmol?1 for QAE. These values are assumed to be reflected in the quantities of ions-water interaction of Sephadexes. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
将FRP筋作为预应力筋使用,必须了解其应力松弛特性.要测定FRP筋的应力松弛特性,关键是要找到一种有效的试样端部锚固方法.FRP筋一般的锚具系统应用于松弛特性测试时存在这样或那样的缺陷,为此本文提出了一种创新的测试FRP筋应力松弛特性的试样端部加强锚固的方法,实现了松弛试验时端部近似为零的滑移,保证了试验段应变的恒定,从而可准确测定FRP筋的应力松弛性能.  相似文献   

18.
预应力FRP筋混凝土梁的非线性有限元分析   总被引:2,自引:0,他引:2  
FRP作为一种新型高性能的结构材料,具有轻质、高强和抗腐蚀等特点,在土木工程中是一种具有发展前景的新型预应力筋用材.本文详细介绍了有限元软件ANSYS对预应力FRP筋混凝土梁的建模过程,并且将分析结果与体内有粘结和体内无粘结预应力FRP筋混凝土试验梁的试验结果进行了比较,验证了模型的可靠性.  相似文献   

19.
采用先张法工艺设计制作了1根全预应力玄武岩纤维增强塑料筋(BFRP筋)混凝十梁,2根部分预应力BFRP筋混凝土梁和1根普通BFRP筋混凝土梁,对其进行三分点加载试验,主要测试了构件的开裂荷载、裂缝和挠度发展情况、屈服荷载和极限荷载等性能。结果表明,对BFRP筋施加预应力,可以提高梁的杭裂度,有效减小梁的挠度和裂缝宽度;非预应力钢筋的配筋率越大,梁的极限抗弯承载力越大,在BFRP筋配筋率相同的情况下,全预应力梁和非预应力梁的极限抗弯承载力相当;在预应力梁中采用非预应力钢筋,可以减小裂缝宽度间距,并且提高梁的延性;全预应力梁和非预应力梁在纯弯段上的裂缝数量和裂缝分布基本相同,部分预应力梁的裂缝数量明显多于全预应力梁和非预应力梁。  相似文献   

20.
目的探讨类风湿关节炎致自发性手指肌腱断裂的临床特点和治疗方法。方法自2005年11月至2007年5月,对19例(42指)类风湿腕部伸指肌腱自发性断裂的患者,采用自体掌长肌腱移植及Darrach手术进行修复。结果术后随访时间为2月-18月,未见肌腱再次断裂,优良率为100%。病理检查显示:滑膜组织增生伴增生性细胞浸润。结论单根或多根肌腱断裂是类风湿关节炎致自发性手指肌腱断裂的常见特点,建议临床对Larsen分类IV级的类风湿关节炎的患者应加强监察,作四肢MRI检查,对发生肌腱断裂者,可采用肌腱移植、移位及用Darrach手术方法,疗效确切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号