首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
自黑潮脱落并由吕宋海峡进入中国南海的中尺度涡(简称脱落涡旋)对黑潮与南海的水体交换、热量及物质输送等过程均有十分重要的作用。基于1993—2013年OFES(OGCM for the Earth Simulator)模式数据产品,分析研究了脱落涡旋的统计特征及其温盐流三维结构,并与卫星观测结果进行对比分析。OFES模式的海表面高度数据和卫星高度计数据的统计结果都表明气旋式脱落涡旋(脱落冷涡)绝大部分在黑潮西侧边缘生成,反气旋式脱落涡旋(脱落暖涡)则大部分在黑潮控制区(包括黑潮流套区)生成,脱落暖涡的数量远多于脱落冷涡的。OFES模式数据得到的脱落涡旋个数和出现频率较卫星观测结果要明显偏低。此外,由OFES模式数据得到的脱落涡旋三维结构表明,黑潮控制区和黑潮西侧边缘生成的脱落冷涡的流场垂向影响深度差异较大,而脱落暖涡的流场垂向影响深度一般达水深1000 m以深,脱落涡旋的位势温度的垂向影响深度与该涡的流场垂向影响深度相当,其盐度的垂向影响深度则较浅;脱落涡旋的温盐结构受黑潮的影响较大。  相似文献   

2.
吕宋海峡两侧中尺度涡统计   总被引:4,自引:0,他引:4  
利用1993-2000年间的T/P卫星高度计轨道资料的时间序列和MODAS同化产品中的卫星高度计最优插值资料对南海东北部海区中尺度涡旋进行动态追踪。按照给定的标准从2种资料中提取了涡旋信息并对其特征量进行统计分析。结果表明,南海东北部海区中尺度涡旋十分活跃,平均每年6个,其中暖涡4个,尺度一般为200~250 km,平均地转流速为44 cm/s;冷涡每年平均2个,尺度一般为150~200 km,平均地转流速为-37 cm/s。吕宋海峡两侧涡旋的比较分析表明,南海东北部海区仍属于西北太平洋副热带海区的涡旋带,冷、暖涡旋处于不断的形成—西移—消散过程中。南海东北部中尺度冷涡大多是南海内部产生的,而暖涡与吕宋海峡外侧暖涡有一定的联系又具有相对的独立性。分析认为西北太平洋的西行暖涡在到达吕宋海峡时,受到黑潮东翼东向下倾的等密度面的抑制和岛链的阻碍,涡旋停滞于吕宋海峡外侧并逐渐消弱,被阻挡于吕宋海峡东侧涡旋释放的能量,形成一支横穿吕宋海峡(同时横穿过黑潮)的高速急流,把能量传递给吕宋海峡西侧的涡旋,使其得到强化,这是吕宋海峡两侧涡旋联系的一种重要机制。  相似文献   

3.
基于HYCOM的南海中尺度涡数值模拟   总被引:1,自引:0,他引:1  
韩玉康  周林  吴炎成 《海洋通报》2016,35(3):299-316
结合AVISO(Archiving Validation and Interpolation of Satellite Oceanographic Data)高度计资料,利用改进的NERSCHYCOM(Nansen Environmental and Remote Sensing Center-Hybrid Coordinate Ocean Model)大洋环流模式,对南海中尺度涡进行数值模拟研究,主要包括中尺度涡的三维结构、南海EKE(Eddy Kinetic Energy,涡动动能)的垂向变化、黑潮中尺度涡的脱落以及涡旋近岸时的结构变化等。模式再现了2007年2月-3月菲律宾西侧海域的一次暖涡过程,探究了其生命期中各阶段的特征物理量的变化,对其成熟时期的涡旋结构研究表明,中尺度涡的结构呈现不对称性,涡旋两侧的流场空间范围和流场强度均不相同,涡旋的半径和中心位置随深度不断变化,并且由涡旋作用产生的升降流的中心与涡旋自身中心并不重合,二者之间有一定距离。初步探索EKE的垂向分布情况,认为南海年平均EKE在垂向变化上呈现三段式,主要部分分布在300m以浅深度,但同时垂向又能达到海洋深层。分析了一次黑潮中尺度涡脱落的模式模拟个例,推测黑潮中尺度涡脱落原因:黑潮流径西移、外海中尺度涡对黑潮的强迫、地形作用,并且结果表明从黑潮脱落的中尺度涡可以携带大量高温高盐水体进入南海,对南海的温盐性质产生很大的影响。初步探索涡旋近岸时的结构变化,涡旋靠近岸界时,受岸界挤压,流速在一段时间内会增大,继续靠近岸界,由于岸界的摩擦、海底的拖曳,导致能量耗散,流速减小,最终涡旋消亡。  相似文献   

4.
吕宋海峡处涡致输运显著影响南海北部的热盐平衡。本文利用1993—2018年间的AVISO卫星数据,识别和筛选了南海北部76个黑潮脱落反气旋涡、46个黑潮伴生气旋涡、29个南海局地反气旋涡和40个南海局地气旋涡。分析发现,四类涡旋的平均非线性系数均远大于1,证实了筛选涡旋具有黑潮高盐水输运能力。涡旋传播路径受南海北部地形影响,在西向传播过程中向西南向偏移。相较于气旋涡,反气旋涡形成之后向南海北部移动了更远的距离。涡旋多形成于吕宋海峡中部,而随着纬度的升高或降低,形成概率逐渐减小。脱落(伴生)涡旋多形成于秋冬两季而夏季最少,以反气旋涡居多,平均每月反气旋涡要比气旋涡多2.5个;年平均脱落(伴生)涡旋数目约为4.6,且气旋涡并不是每年都形成。整体上,El Ni?o事件通过影响黑潮路径而使得黑潮脱落或伴生的涡旋数目增多。  相似文献   

5.
冬季南海北部中尺度涡旋的数值研究   总被引:13,自引:1,他引:12  
南海环流的一个主要特征是上层海洋环流具有多涡结构,海洋中尺度涡旋的演变(时间上的生消和空间上的迁移)是南海环流季节调整的可能方式。文中依据卫星遥感海面高度资料和实际海洋观测所揭示的南海北部存在中尺度涡旋体系的基本事实,采用一个改进了涡分辨(eddy-resolving)普林斯顿海洋模式(POM),对冬季处于强盛的东北季风强迫以及黑潮在巴士海峡入侵的共同作用下的南海北部环流的中尺度涡旋体系进行了数值研究,初步再现了冬季南海北部中尺度涡的生命史。计算结果表明,在实际的气候冬季风应力驱动下,具有的实际侧边界地形的南海北部呈现有强烈的中尺度涡旋。文中探讨了中尺度涡的垂直结构、温盐场的配置以及大尺度水平辐合辐散、海洋垂直运动与之相关的时空结构。由此可以得知,在冬季南海北部中尺度涡旋生命史的不同阶段,上述动力学因子的重要性是相对的。不同的敏感性试验表明,斜压调整是形成冬季南海中尺度涡旋体系的决定性因子;边界的入流和风应力驱动是影响中尺度涡旋运动的主要因素。  相似文献   

6.
南海是个准封闭的辽阔海域,它的尺度足以形成独立的水平环流和涡旋。徐锡祯等人(1980)利用最近50年约六千个站次的历史资料,研究了整个南海四季表层及深层的平均水平环流模式,指出东沙群岛东北方有一个反气旋性的暖涡,西南方有一个气旋性的冷涡。冷涡夏强冬弱;暖涡相反,冬强夏弱。1979—1982年,本所进行了南海东北部海区海洋学综合调查,郭忠信、仇德忠等(1984,1985)用实测资料计算表明,在东沙群岛东北方确实有一个反气旋性的暖涡,冬强夏弱,西南方有一个气旋性的冷涡,  相似文献   

7.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

8.
南海中尺度涡的季节和年际变化特征分析   总被引:12,自引:0,他引:12  
以11a(1993—2003年)TOPEX/Poseidon、Jason和ERS1/2高度计的融合资料为基础,统计了南海中尺度涡的时空分布,分析了南海中尺度涡的季节和年际变化,并结合QuikSCAT、ERS1/2风场资料初步探讨了南海中尺度涡形成的可能机制。研究结果表明,南海中尺度涡存在明显的季节和年际变化,而季风强迫是这种变化的主要驱动因素。冬季冷涡(气旋涡)主要分布在吕宋岛西北和越南东南海域,而暖涡(反气旋涡)主要在18°N以北出现。春季暖涡在南海中部开始出现并得到充分发展。夏季暖涡明显多于冷涡,暖涡主要分布在越南东南和吕宋岛西北海域,而冷涡分布于越南以东和南海东北部。秋季冷涡主要分布在越南沿岸,暖涡则分布在南海东北部;11a海面高度异常均方根的时空分布变化也显示了南海中尺度涡存在较强的年际变化。  相似文献   

9.
卫星高度计资料揭示的冬季南海吕宋冷涡的双涡结构   总被引:1,自引:0,他引:1  
吕宋冷涡是南海海洋环流系中最重要的涡旋之一。利用卫星高度计资料时空较高分辨率的优势,发现冬季吕宋冷涡有可能是由2个气旋式涡旋所组成的,一个气旋式涡旋位于吕宋岛的西侧(LCE1),另一个位于吕宋岛的西北(LCE2)。利用相关分析、功率谱分析等,估计了局地风应力和黑潮在形成吕宋冷涡过程中各自的贡献。研究结果表明,LCE1只存在于冬季,与吕宋岛西侧局地的风应力旋度有关;LCE2位于进入吕宋海峡的黑潮的西侧,全年存在,可能是由黑潮所诱生的气旋式涡旋,其变化主要周期为季节内振荡。  相似文献   

10.
采用海洋再分析结果,研究了海洋涡旋和锋面波动对台湾以东黑潮锋的影响,结果表明,Rossby波第一斜压模态形成的冷涡(暖涡),减弱(增强)台湾以东黑潮温度锋强度,减小(加大)锋的宽度.在再分析结果中,捕获到1991年1-2月台湾以东的一次黑潮锋面波动.锋面波动的波槽(波脊)到达时,该温度锋强度减弱(增强),宽度和厚度减小...  相似文献   

11.
钱思佳  于方杰  陈戈 《海洋科学》2021,45(11):10-19
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50~100 km涡旋进行研究,发现50~100 km涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50~100 km涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50~100 km涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

12.
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50-100公里涡旋进行研究,发现50-100公里涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50-100公里涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50-100公里涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

13.
黑潮通过吕宋海峡入侵南海呈现明显的瞬态特征。以往的研究通常将黑潮在吕宋海峡附近的流态分为几种不同类型。本文基于表层地转流计算得到的有限时间李雅普诺夫指数场(FTLE),展示了拉格朗日视角下的吕宋海峡上层水交换特征。从FTLE场提取的拉格朗日拟序结构(LCSs)很好地识别了吕宋海峡附近的典型流态和旋涡活动。此外,这些LCSs还揭示了吕宋海峡周围复杂的输运路径和流体域,这些特征得到了卫星跟踪浮标轨迹的验证,且从流速场中是无法直接识别的。FTLE场显示,吕宋海峡附近表层水体的输运形态主要可分为四类。其中,黑潮直接向北流动的“跨越”形态和顺时针旋转的“流套”形态的发生频次明显高于直接进入南海的黑潮分支“渗入”形态和南海水流出至太平洋的“外流”形态。本文还进一步分析了黑潮在吕宋海峡处的涡旋脱落事件,突出强调了LCSs在评估涡旋输运方面的重要性。反气旋涡旋的脱落个例表明,这些涡旋主要源自黑潮“流套”,涡旋脱落之前可有效地俘获黑潮水。LCS所指示的输运通道信息有助于预测最终被反气旋涡所挟卷水体在上游的位置。而在气旋涡的形成过程中,LCS的分布特征表明,大部分气旋涡并未与黑潮水的输运路径相连通。因此,气旋涡对从太平洋到南海的上层水交换的贡献较小。  相似文献   

14.
黑潮延伸体邻近区域中尺度涡特征统计分析   总被引:7,自引:3,他引:4  
本文利用20年的卫星高度计资料,对黑潮延伸体邻近海区(25°—45°N,135°E—175°W)中尺度涡的统计特征以及季节变化进行了统计研究。基于涡旋自动识别方法,共识别出本区域3006个气旋涡轨迹和2887个反气旋涡轨迹,其平均周期分别为9.99周和11.00周,平均半径分别为69.5km和71.8km。长生命周期涡旋的平均半径、涡度、涡动能(EKE)和涡旋能量密度(EI)在生命周期内大致都经历了增大-基本保持不变-减小这三个阶段。绝大多数涡旋沿纬线向西移动,经向移动距离较小,气旋涡和反气旋涡在西向传播过程中都具有明显的向南(赤道)偏离趋势。涡旋的生成数量与总数量均在春夏季达到最多,且这一时期涡旋的平均涡度、EKE、EI处于较高水平。  相似文献   

15.
The continental slope in the northern South China Sea(SCS) is rich in mesoscale eddies which play an important role in transport and retention of nutrients and biota. In this study, we investigate the statistical properties of eddy distributions and propagation in a period of 24 years between 1993 and 2016 by using the altimeter data. A total of 147 eddies are found in the continental slope region(CSR), including 70 cyclonic eddies(CEs) and 77 anticyclonic eddies(ACEs). For those eddies that appear in the CSR, the surrounding areas of Dongsha Islands(DS) and southwest of Taiwan(SWT) are considered as the primary sources, where eddies generated contribute more than 60% of the total. According to the spatial distribution of eddy relative vorticity, eddies are weakening as propagating westward. Although both CEs and ACEs roughly propagate along the slope isobaths, there are discrepancies between CEs and ACEs. The ACEs move slightly faster in the zonal direction, while the CEs tend to cross the isobaths with large bottom depth change. The ACEs generally move further into the basin areas after leaving the CSR while CEs remain around the CSR. The eddy propagation on the continental slope is likely to be associated with mean flow at a certain degree because the eddy trajectories have notable seasonal signals that are consistent with the seasonal cycle of geostrophic current. The results indicate that the eddy translation speed is statistically consistent with geostrophic velocity in both magnitude and direction.  相似文献   

16.
为了探究东海黑潮周边涡旋分布、形成机理及运动规律,基于法国国家空间研究中心(CNES)卫星海洋学存档数据中心(AVISO)的中尺度涡旋数据集展开了研究。首先,统计了近27年东海黑潮周边的涡旋分布,发现在黑潮弯曲海域产生了650个涡旋,在黑潮中段海域产生了271个涡旋,其中直径100~150 km之间的涡旋数量最多,涡旋振幅主要集中在2~6 cm。其次,分析了东海黑潮的运动路径和涡运动过程,结果表明,黑潮气旋式弯曲海域内侧易产生气旋涡,且移动路径较长,如台湾东北海域黑潮流轴气旋式弯曲处产生的涡旋,其平均位移达到了87.6 km;当反气旋式弯曲海域内侧产生反气旋涡时,涡旋往往做徘徊运动。黑潮中段海域的涡旋呈现出气旋涡在黑潮主轴西侧、反气旋涡在黑潮主轴东侧的极性对称分布特征,两类涡都沿黑潮主轴向东北方向移动。最后,结合再分析的流场、海面高度数据,讨论了涡旋运动规律和生成机制。黑潮弯曲处涡旋的生成与黑潮流体边界层分离有关,奄美大岛南部到冲绳岛西侧的黑潮逆流对黑潮中段海域涡的极性对称分布起到了关键作用,涡旋在运动过程中通常经历生长、成熟和衰变三个阶段。  相似文献   

17.
采用AVISO提供的卫星高度计融合数据,对南海及西北太平洋(5°~35°N,105°~150°E)1993~2009年17a间的中尺度涡活动进行统计分析.结果表明南海中尺度涡活动具有明显的年际变化,每年观测到产生的中尺度涡个数平均为21~22个,标准差约为4个,占年平均值的20%;而西北太平洋中尺度涡个数的年际差异不大,平均每年观测到150~151个中尺度涡产生,标准差约为14个,仅占年平均值的9%.中尺度涡的逐月统计结果表明南海和西北太平洋的中尺度涡活动均有明显季节变化,1993~2009年间的各月南海和西北太平洋分别观测到30~31个和213~214个中尺度涡产生,标准差分别约为6个和41个,均占各自月平均值的19%.中尺度涡主要集中分布在南海东北部、越南东部和黑潮流轴附近海域.涡动能、海面高度距平均方根以及涡度均方根的空间分布大致与涡旋个数分布一致,但在西北太平洋的低纬海区和黑潮延伸体区域则不甚吻合.在相同的涡旋判别标准下,西北太平洋低纬海区(5°~15°N)观测到的中尺度涡个数比中高纬海区要少得多.  相似文献   

18.
Altimeter data and output from the HYbrid Coordinate Ocean Model global assimilation run are used to study the seasonal variation of eddy shedding from the Kuroshio intrusion in the Luzon Strait. The results suggest that most eddy shedding events occur from December through March, and no eddy shedding event occurs in June, September, or October. About a month before eddy shedding, the Kuroshio intrusion extends into the South China Sea and a closed anticyclonic eddy appears inside the Kuroshio loop which then detaches from the Kuroshio intrusion. Anticyclonic eddies detached from December through February move westward at a speed of about 0.1 m s−1 after shedding, whereas eddies detached in other months either stay at the place of origin or move westward at a very slow speed (less than 0.06 m s−1). The HYCOM outputs and QuikSCAT wind data clearly show that the seasonal variation of eddy shedding is influenced by the monsoon winds. A comparison between eddy volume and integrated Ekman transport indicates that, once the integrated Ekman transport exceeds 2 × 1012 m3 (which roughly corresponds to the volume of an eddy), the Kuroshio intrusion expands and an eddy shedding event occurs within 1 month. We infer that the Ekman drift of the northeasterly monsoon pushes the Kuroshio intrusion into the SCS, creates a net westward transport into the Strait, and leads to an eddy detachment from the Kuroshio.  相似文献   

19.
Eddy Shedding from the Kuroshio Bend at Luzon Strait   总被引:16,自引:1,他引:16  
TOPEX/POSEDIENT-ERS satellite altimeter data along with the mean state from the Parallel Ocean Climate Model result have been used to investigate the variation of Kuroshio intrusion and eddy shedding at Luzon Strait during 1992–2001. The Kuroshio penetrates into the South China Sea and forms a bend. The Kuroshio bend varies with time, periodically shedding anticyclonic eddies. Criteria of eddy shedding are identified: 1) When the shedding event occurs, there are usually two centers of high Sea Surface Height (SSH) together with negative geostrophic vorticity in the Kuroshio Bend (KB) area. 2) Between the two centers of high SSH there usually exists positive geostrophic vorticity. These criteria have been used to determine the eddy shedding times and locations. The most frequent eddy shedding intervals are 70, 80 and 90 days. In both the winter and summer monsoon period, the most frequent locations are 119.5°E and 120°E, which means that the seasonal variation of eddy shedding location is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号