首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colloidal stability of bare and poly(methyl methacrylate) (PMMA)-grafted silica nanoparticles was studied in 1-alkyl-3-methylimidazolium ([C(n)mim])-based ionic liquids (ILs) with different anionic structures. The theoretical estimation of the colloidal interaction between monodispersed bare silica particles by using the Derjaguin-Landau-Verwey-Overbeek theory indicates that bare silica particles cannot be stabilized and they rapidly form aggregates in all the ILs used in this study. The instability of bare silica particles was experimentally confirmed by dynamic light scattering measurement and in situ transmission electron microscopy observations by utilizing the negligible vapor pressure of ILs. This evidence suggests that electrostatic stabilization is inefficient in ILs because of the high ionic atmosphere and the resulting surface-charge screening. The PMMA-grafted silica particles exhibited long-term colloidal stability in [C(4)mim][PF(6)] and [C(n)mim][NTf(2)], which are compatible with the grafted PMMA. On the other hand, the PMMA-grafted particles could not be stabilized in [C 4mim][BF 4] due to the poor solubility of the grafted PMMA in the IL. Effective steric stabilization is important for obtaining stable colloidal particles in ILs.  相似文献   

2.
Negatively charged silica sol is known to lead to fouling of anion exchange membranes during electrodialysis (ED) as a result of its deposition on the membrane surface. It is known that the fouling potential is related to the physical and electrochemical properties of the silica particles as well as those of the anion exchange membranes. In this study, the properties of the silica sol were characterized in terms of its particle size, turbidity, and zeta potential in order to predict their effects on the electrodialysis performance. In the stability of colloidal particles, the critical coagulation concentrations of silica sol were determined as functions of ionic strength, cation species, and solution pH. In the electrodialysis of NaCl solution containing silica sol with various concentrations of CaCl(2), the colloidal behavior related to deposition and transport was examined during and after electrodialysis. The electrodialysis experiments clearly showed that the deposition and transport of silica sol during electrodialysis were related to the colloidal stability of dispersion.  相似文献   

3.
We explore the generality of nanoparticle haloing as a novel colloidal stabilization mechanism in binary mixtures of silica microspheres and polystyrene nanoparticles. By selectively tuning their electrostatic interactions, both the initial microsphere stability and the role of nanoparticle additions are varied. Adsorption isotherm and zeta potential measurements indicate that highly charged nanoparticles exhibit a weak (haloing) association with negligibly charged microspheres, whereas they either strongly adsorb onto oppositely charged or are repelled by like-charged microsphere surfaces, respectively. Bulk sedimentation and confocal scanning fluorescence microscopy reveal that important differences in system stability emerge depending on whether the added nanoparticles serve as haloing, bridging, or depletant species.  相似文献   

4.
The electrophoresis in a monodisperse suspension of dielectric spheres with an arbitrary thickness of the electric double layers is analytically studied. The effects of particle interactions are taken into account by employing a unit cell model, and the overlap of the double layers of adjacent particles is allowed. The electrokinetic equations, which govern the ionic concentration distributions, the electric potential profile, and the fluid flow field in the electrolyte solution surrounding the charged sphere in a unit cell, are linearized assuming that the system is only slightly distorted from equilibrium. Using a perturbation method, these linearized equations are solved with the surface charge density (or zeta potential) of the particle as the small perturbation parameter. Analytical expressions for the electrophoretic mobility of the colloidal sphere in closed form correct to O(zeta) are obtained. Based on the solution of the electrokinetic equations in a cell, a closed-form formula for the electric conductivity of the suspension up to O(zeta(2)) is derived from the average electric current density. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are made for both the electrophoretic mobility and the electric conductivity. Copyright 2001 Academic Press.  相似文献   

5.
Charging behavior and colloidal stability of amidine latex particles are studied in the presence of poly(sodium styrene sulfonate) (PSS) and KCl. Detailed measurements of electrophoretic mobility, adsorbed layer thickness, and aggregation (or coagulation) rate constant on varying the polymer dose, molecular mass of the polymer, and ionic strength are reported. Polyelectrolyte adsorption leads to the characteristic charge reversal (or overcharging) of the colloidal particles at the isoelectric point (IEP). In accordance with classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, uncharged particles tend to aggregate because of van der Waals attraction, whereas charged particles are stabilized by electrical double layer repulsion. Attractive patch-charge interactions originating from the laterally inhomogeneous structure of the adsorbed polymer substantially decrease the suspension stability or even accelerate the aggregation rate beyond diffusion control. These electrostatic non-DLVO forces become progressively important with increasing molecular mass of the polymer and the ionic strength of the solution. At higher polymer dose of typically 10 times the IEP, one observes the formation of a saturated layer of the adsorbed polymer with a thickness of several nanometers. Its thickness increases with increasing molecular mass, whereby the layer becomes increasingly porous. This layer does not seem to be involved in the suspension stabilization, since at such high polymer doses the double layer repulsion has attained sufficient strength to stabilize the suspension.  相似文献   

6.
Owing to their fascinating properties, ionic liquids (ILs) are now receiving a great deal of attention as alternatives to organic solvents and electrolyte solutions and as synthetic and dispersion media for colloidal systems. Colloidal stability is an essential factor in determining the properties and performance of colloidal systems combined with ILs. The remarkable properties of ILs primarily originate from their highly ionic nature. Although such high ionic strength often causes colloidal aggregation in aqueous and organic suspensions, some colloidal particles can be well suspended in ILs without any stabilizers. In the first part of this article, we focus on recent experiments conducted to investigate the colloidal stability of bare and polymer-grafted silica nanoparticles and on the surface force between silica substrates and ILs. Three different repulsions between colloidal particles (i.e., electrostatic, steric, and solvation forces) are also highlighted, after which a possible interpretation of the results in terms of the stabilization mechanism in ILs both in the presence and in the absence of stabilizers is proposed. The latter part of this article provides an overview of our recent studies on colloidal soft materials with ILs. On the basis of the dispersed states of the silica colloids in ILs, two different soft materials, a colloidal gel and a colloidal glass in ILs, were fabricated. The relationship between their functional properties, such as ionic transport, rheological properties, and optical properties, and the microstructure of the colloidal materials is also described.  相似文献   

7.
Cationic polystyrene nanoparticles, as a model drug carrier system for nucleic acids, are capable of binding negatively charged oligonucleotides by multiple electrostatic interactions. The effect of the adsorption of phosphorothioate oligonucleotides on the physicochemical properties of the carrier system was investigated for uncoated and sterically stabilized latex particles. Turbidity measurements and photon-correlation spectroscopy indicate that the colloidal stability of the nanoparticle-oligonucleotide conjugates is influenced by the number of oligonucleotides adsorbed on the carrier. Especially in the case of the uncoated material, a destabilizing effect has been observed up to oligonucleotide concentrations of 2.7 μmol/g polymer. Strikingly, at higher concentrations the latexes exhibit colloidal stability similar to the oligonucleotide-free samples. These results were correlated to zeta-potential measurements demonstrating a reversal from positive to negative values of the zeta potential with increasing oligonucleotide concentration. The points of zero charge of the particles are in the region of maximum coagulation. These findings were compared to adsorption studies and calculations based on the random sequential adsorption model. It appears that at first the colloidal stability of the carrier systems is diminished with increasing oligonucleotide adsorption, while higher surface coverages lead to a significant reduction in coagulation. At the saturation level the surface coverage can be considered as a monolayer of “side-on” adsorbed molecules and the conjugates exhibit colloidal stability similar to the bare particles without adsorbed molecules. Received: 20 April 1998 Accepted: 16 July 1998  相似文献   

8.
We report on a single-step coating process and the resulting colloidal stability of silica-coated spindle-type hematite nanoparticles (NPs) decorated with a layer of poly(acrylic acid) (PAA) polyelectrolyte chains that are partially incorporated into the silica shell. The stability of PAA coated NPs as a function of pH and salt concentration in water was compared to bare hematite particles and simple silica-coated hematite NPs, studying their electrophoretic mobility and the hydrodynamic radius by dynamic light scattering. Particles coated with this method were found to be more stable upon the addition of salt at pH 7, and their aggregation at the pH of the isoelectric point is reversible. The hybrid coating appears to increase the colloidal stability in aqueous media due to the combination of the decrease of the isoelectric point and the electrosteric stabilization. This coating method is not limited to hematite particles but can easily be adapted to any silica-coatable particle.  相似文献   

9.
Fluoroalkyl end-capped oligomers reacted with tetraethoxysilane and silica/nanoparticles under alkaline conditions to afford fluoroalkyl end-capped oligomers/silica nanoparticles (mean diameters: 31–54 nm) with a good dispersibility and stability in organic media. Interestingly, the isolated fluorinated particle powders were found to afford nanometer size-controlled colloidal particles with a good redispersibility and stability in these media. In addition, fluoroalkyl end-capped oligomers/silica nanoparticles-encapsulated guest molecules such as stable organic radicals and ionic liquids were prepared under similar conditions. These fluorinated nanoparticles-encapsulated guest molecules were applied to a new type of surface-modification agent, and these particles were able to disperse well above the poly (methyl methacrylate) films.  相似文献   

10.
The zeta potentials and dispersion properties of precipitated calcium carbonate suspensions adsorbed with alkyl polyglycosides in aqueous medium were investigated. Within the investigated pH ranges, the adsorption curves of alkyl polyglycosides on calcium carbonates show sigmoidal shapes, and the zeta potential decreases as the amount of adsorption increases. At positively charged surfaces of low pH, the adsorption amounts were greater than those at negatively charged surfaces, indicating that alkyl polyglycosides were negatively charged in aqueous solutions. At low concentrations of alkyl polyglycosides, the dispersion stabilities of suspensions were very poor and showed no linearity with zeta potentials over the entire range of pHs, which may be attributed to the onset of hydrophobic interaction between particles due to the adsorption of surfactant molecules. This destabilization continued until monolayer coverage by the surfactant layer was complete. Based on the classical DLVO theory, there may be a strong hydrophobic interaction between particles. Beyond monolayer adsorption, the dispersion stability increases, probably by the formation of hemimicelle or admicelle. Therefore, it is believed that ionization of alkyl polyglycosides and admicelles of surfactants on particle surface plays a key role in the stability of dispersions and the abrupt increase in adsorption. Copyright 2000 Academic Press.  相似文献   

11.
Colloidal silica sols having a narrow dispersity, prepared by the ammonia-catalyzed hydrolysis of Si(OEt)4, were functionalized by reaction with vinyltrimethoxysilane (H2C?CHSi(OMe)3) or methacryloxypropyltri-methoxysilane (H2C?CMeCO2(CH2)3Si(OMe)3. The electrostatically stabilized colloids were stable in acetone and dimethylformamide. Radical polymerization of methyl methacrylate in the presence of either type of functionalized particle led to particles with surfacegrafted poly(methyl methacrylate) (PMMA). The efficiency of polymer grafting was shown to be related to the nature of the functional groups. The PMMA-modified, sterically stabilized particles were colloidally stable in solvents ranging from acetone to toluene but unstable in water or hexane. The vinyl functionalized silica was alternatively reacted with HSiMe2-terminated silicones in a platinum-catalyzed hydrosilylation. The resultant sterically stabilized particles were stable in hexane. It was thus possible to convert the unmodified silica to organo-functionalized silica and finally to polymer-grafted silica while maintaining colloidal stability. During the course of these modifications, the mechanism for colloidal stability changed from electrostatic to steric stabilization.  相似文献   

12.
The interaction between charged colloidal particles is mediated by their electric double layers. Given that pairs of like-charged particles experience a repulsion, why do some dilute colloidal dispersions become unstable and condense at low ionic strengths? This puzzling paradox appears to have been largely resolved over the past year by a careful analysis of all the contributions to the thermodynamic potential of the dispersion. Condensation can be predicted using the traditional pair repulsion of the Poisson–Boltzmann theory without invoking any long-range attractions in the pair potential. However, it has emerged that one has to go beyond the Poisson–Boltzmann theory to account for the instability that occurs in confined colloidal dispersions. Other recent advances in the ubiquitous Poisson–Boltzmann theory have included effective surface charge approaches in calculating the electrokinetic zeta potential, and the modelling of charge regulation in colloidal systems.  相似文献   

13.
The formation and stability of liquid paraffin-in-water emulsions stabilized solely by positively charged plate-like layered double hydroxides (LDHs) particles were described here. The effects of adding salt into LDHs dispersions on particle zeta potential, particle contact angle, particle adsorption at the oil-water interface and the structure strength of dispersions were studied. It was found that the zeta potential of particles gradually decreased with the increase of salt concentration, but the variation of contact angle with salt concentration was very small. The adsorption of particles at the oil-water interface occurred due to the reduction of particle zeta potential. The structural strength of LDHs dispersions was strengthened with the increase of salt and particle concentrations. The effects of particle concentration, salt concentration and oil phase volume fraction on the formation, stability and type of emulsions were investigated and discussed in relation to the adsorption of particles at the oil-water interface and the structural strength of LDHs dispersions. Finally, the possible stabilization mechanisms of emulsions were put forward: the decrease of particle zeta potential leads to particle adsorption at the oil-water interface and the formation of a network of particles at the interface, both of which are crucial for emulsion formation and stability; the structural strength of LDHs dispersions is responsible for emulsion stability, but is not necessary for emulsion formation.  相似文献   

14.
Internally self-assembled submicrometer emulsions were stabilized by F127, by the charged diblock copolymer K151, by L300 particles, and by sodium dodecyl sulfate (SDS). The stabilization of all investigated internal phases and the impact of the stabilizer on them are discussed. The use of charged stabilizers results in a highly negative zeta potential of the emulsion droplets, which can be exploited as a means to control their adsorption onto charged surfaces. Small-angle X-ray scattering and dynamic light scattering were used to determine the internal structure and size of the emulsion droplets, respectively.  相似文献   

15.
Poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) have been consecutively adsorbed onto 1.5-microm charged silica (SiO2) particles. Time-dependent adsorption studies indicate that, due to the strong ionic charge of the dissociated polycation in water, adsorption is complete in less than 30 min. Indications of the maximum adsorption density, changes in surface charge, and stability of the layered particles are demonstrated through adsorption isotherms and electrophoretic mobility (EPM) measurements. Further stability of the PDADMAC layer is demonstrated through multiwashing with ultra pure deionized water. Preliminary desorption studies of the PSS layer also illustrate a stabilized two-layer system. Due to the nature of the electrostatic charges on the surface of the SiO2 core particles and both polyelectrolytes in aqueous media, the use of polyelectrolytes as layering elements serves as a model for the assembly of time-released drug delivery particle systems.  相似文献   

16.
The net charge of a colloidal particle was controlled using light and a new photocleavable self-assembled monolayer (SAM). The SAM contained a terminal ammonium group and a centrally located carboxylic acid group that was masked with an ortho-nitrobenzyl functionality. Once exposed to UV light, the 2-nitrobenzyl group was cleaved, therefore transforming the colloidal particle from a net positive (silica-SAM-NH3+) to a net negative (silica-SAM-COO-) charge. By varying the UV exposure time, their zeta potential could be tailored between +26 and -60 mV at neutral pH. To demonstrate a photoinduced gel-to-fluid phase transition, a binary colloidal suspension composed of silica-SAM-NH3+ and negatively charged, rhodamine-labeled silica particles was mixed to form a gel. Exposure to UV light rendered all of the particles negative and therefore converted the system into a colloidal fluid that settles to form a dense sediment.  相似文献   

17.
 The stabilization and flocculation behavior of colloidal silica-particles with cationic polyelectrolytes (PE) is investigated. The zetapotentials, diffusion coefficients and flocculation rate constants of silica particles have been measured as a function of the adsorbed amount of cationic polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions at different salt concentrations and pH-values. Very fast flocculation due to van der Waals attraction occurs if the zetapotential is small. At low ionic strength this condition occurs just below the plateau of the adsorption isotherms where the surface charges are screened by adsorbed polycations. Additionally with high molecular polycations slow mosaic flocculation is observed at lower PE concentrations. At high ionic strength fast flocculation takes place at low macroion concentration due to the screening of the surface charges by adsorbed polycations and salt ions. At medium concentrations of polycations below plateau adorption slow bridging flocculation is observed. At plateau adsorption the suspensions become stabilized up to high ionic strength. At low salt concentration charge reversal at full coverage with polycations results in electrostatic repulsion. At high ionic strength the particles are stabilized sterically due to the osmotic repulsion of the long adsorbed PE tails. Therefore macroions of high molar mass are necessary to stabilize the suspension at high ionic strength. Received: 27 January 1998 Accepted: 23 March 1988  相似文献   

18.
Smoluchowski equation and the Monte Carlo simulations are used to study the conditions leading to the reversal of the electrophoretic mobility. Zeta (zeta) potential is identified with the diffuse potential at the shear plane which, we argue, must be placed at least one ionic diameter away from the colloidal surface. For sufficiently strongly charged colloids, zeta potential changes sign as a function of the multivalent electrolyte concentration, resulting in a reversal of the electrophoretic mobility. This behavior occurs even for very small ions of 4 A diameter as long as the surface charge density of the colloidal particles is sufficiently large and the concentration of 1:1 electrolyte is sufficiently low.  相似文献   

19.
Organosols comprising silica nanoparticles, stabilized by adsorbed surfactant layers in low dielectric organic solvents were formulated, and their properties studied. A range of different methods for organosol formation starting from aqueous sols were evaluated and compared, in order to determine the most reliable and reproducible approach. To understand the influence of surfactant type and solvent on stability, samples were prepared with a range of surfactants and in different solvents and solvent blends. Structural properties and interparticle interactions were probed using dynamic light scattering (DLS), zeta potentials were determined, and the surfactant layers were investigated with contrast-variation SANS. SANS data suggest that for systems stabilized by ionic surfactants, the nanoparticles are in equilibrium with a population of reverse micelles, but this is apparently not the case for those stabilized by nonionic surfactants. Low zeta potentials show evidence of a small amount of surface charging in these nonaqueous systems, although it is unlikely to have any significant effect on their overall stability.  相似文献   

20.
The properties of high-pH suspensions of mixtures of silica with low-molecular-weight samples of the water-soluble polymer polyethylenimine (PEI) have been studied. At pH > 10 and low ionic strength, silica nanoparticles are stabilized by a negative surface charge, and PEI has only a very low positive charge. The adsorption of PEI induces a localized positive charge on the segments of polymer closest to the silica surface. The parts of the molecule furthest away from the surface have little charge because of the high pH of the medium. The polymer-covered particle remains negatively charged, imparting some electrostatic stabilization. Suspensions of silica and low-molecular-weight PEI are low-viscosity fluids immediately after mixing, but aggregation occurs leading to the eventual gelation (or sedimentation at lower concentrations) of these mixtures, indicating colloidal instability. The gelation time passes through a minimum with increasing surface coverage. The rate of gelation increases exponentially with molecular weight: for molecular weight > or = 10,000 Da PEI, the instability is so severe that uniform suspensions cannot be produced using simple mixing techniques. The gelation rates increase rapidly with temperature, ionic strength, and reduction in pH. The rate of gelation increases with increasing particle concentration at low surface coverage but decreases at high coverage as a consequence of a small increase in pH. Gels are broken by application of high shear into aggregates that re-gel more rapidly than the original discrete coated particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号