首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ɛr), high quality factor (Q × f) and small temperature coefficient of resonant frequency (τf) are required for the application of chip passive components in the wireless communication technologies. In the present study, the sintering behaviors and dielectric properties of Ba3Ti4Nb4O21 ceramics were investigated as a function of B2O3–CuO content. Ba3Ti4Nb4O21 ceramics with B2O3 or CuO addition could be sintered above 1100 °C. However, the additions of both B2O3 and CuO successfully reduced the sintering temperature of Ba3Ti4Nb4O21 ceramics from 1350 to 900 °C without detriment to the microwave dielectric properties. From the X-ray diffraction (XRD) studies, the sintering behaviors and the microwave dielectric properties of low-fired Ba3Ti4Nb4O21 ceramics were examined and discussed in the formation of the secondary phases. The Ba3Ti4Nb4O21 sample with 1 wt% B2O3 and 3 wt% CuO addition, sintered at 900 °C for 2 h, had the good dielectric properties: ɛr = 65, Q × f = 16,000 GHz and τf = 101 ppm/°C.  相似文献   

2.
Sr0.5Ba0.5Nb2O6 powders were prepared in the partial coprecipitation method. Using amorphous SiO2 as the sintering additive, Sr0.5Ba0.5Nb2O6 ceramics were sintered at different temperatures and the effects of the additive on the sintering behaviors and dielectric properties were studied. The phase structure, microstructure and dielectric properties of the samples were investigated in X-ray diffraction (XRD), SEM and LCR analyzer respectively. The results indicated that the amorphous SiO2 additive could accelerate the pore elimination, shorten the sintering time and enhance the density for Sr0.5Ba0.5Nb2O6 ceramics. The well development of microstructure promoted by the additives can result in the improvement of the dielectric constant and the weakening of the relax behavior. With the help of the additive of 1.5 wt.%, the relative density of the sample sintered at 1300 °C only for 2 h can reached 94.3% and the dielectric constant was up to 4322.  相似文献   

3.
The acicular Sr0.39Ba0.48K0.32Nb2O6 single crystal particles were first prepared by the reaction of SrCO3, BaCO3 and Nb2O5 in molten K2SO4 at 1300 °C for 3 h. By using these single crystal particles as seeds and V2O5 as additives, textured Sr0.4Ba0.6Nb2O6 (SBN40) ceramics were obtained. The effect of V2O5 on sintering behaviour, microstructure and dielectric properties of textured SBN40 ceramics was investigated. The experimental results show that the addition of V2O5 can accelerate the densification rate of the material and encourage the texture of SBN40 ceramics, which further improves the anisotropy in dielectric properties between different directions of textured SBN40 ceramics.  相似文献   

4.
《Ceramics International》2015,41(7):8931-8935
The densification, microstructural evolution and microwave dielectric properties of (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics with x=0, 0.25, 0.5 and 0.75 are investigated in this study. The sintering temperature of the (Ba1−xSrx)(Mg0.5W0.5)O3 is significantly reduced from 1575 °C to 1400 °C as the x value increases from 0 to 0.25 and 0.50; this result is accompanied by the formation of the (Ba1−ySry)WO4 phase and a small quantity of second phase surrounding the grains. The grain size of the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics is increased by raising the Sr2+ content, which significantly lowers the sintering temperature. The microstructure of the (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic displays the smallest average grain size of approximately 0.8 μm, with a narrow grain size distribution. Without long annealing time, very high Q×f values are obtained for the (Ba1−xSrx)(Mg0.5W0.5)O3 ceramics sintered at 1400–1575 °C for a duration of only 2 h. The (Ba0.75Sr0.25)(Mg0.5W0.5)O3 ceramic sintered at 1400 °C results in the best microwave dielectric properties, including εr of 20.6, Q×f of 152,600 GHz and τf of +24.0 ppm/°C.  相似文献   

5.
The Influence of ZnB2O4 glass addition on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using dilatometry, X-ray diffraction, scanning electron microscopy and network analyzer. It was found that a small amount of glass addition to Ba5Nb4O15 lowered the sintering temperature from 1400 to 900 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases such as Ba3B2O6. The Ba5Nb4O15 ceramics with ZnB2O4 glass, sintered at a low temperature, exhibited good microwave dielectric characteristics, i.e., a quality factor (Q × f) = 12,100 GHz, a relative dielectric constant (ɛr) = 40, a temperature coefficient of resonant frequency (τf) = 48 ppm/°C. The dielectric properties were discussed in terms of the densification of specimens and the influence of glassy phases such as Ba3B2O6 and ZnB2O4.  相似文献   

6.
Tungstenbronze type like Ba6−3xR8+2xTi18O54 (R = Sm or Nd) dielectric ceramics reveal high quality factor Q·f as well as high dielectric constant ɛr. We have investigated the effect of Sr substitution for Ba ions on the microwave dielectric properties of the compounds. (Ba1−αSrα)6−3xR8+2xTi18O54 (R = Sm or Nd) ceramics were prepared in the composition ranges of x = 0–0.2 and α = 0–0.312 and the microwave dielectric properties were investigated. (Ba1−αSrα)6−3xSm8+2xTi18O54, where x = 0.1 and α = 0.298, and (Ba1−αSrα)6−3xNd8+2xTi18O54, where x = 0.2, α = 0.296 revealed remarkably higher Q·f value among the solid solutions, indicating that Q·f increased with substituting Sr ions into Ba ions at the rhombic A1-site. This fact suggests that relaxation of local distortions at the A1-sites is closely related to improvement of Q·f.  相似文献   

7.
Ba0.6Sr0.4TiO3?x MgCo2(VO4)2 ceramics with x = 0, 0.5, 1.0, 2.0, and 5.0 wt% was fabricated via conventional solid-state reaction process. The effects of such additives on the structure, dielectric and tunability properties were systemically investigated. A small number of secondary phase identified as Ba3(VO4)2 appeared in Ba0.6Sr0.4TiO3?x MgCo2(VO4)2 ceramics when x is more than 5.0 wt%. With increasing of MgCo2(VO4)2 content, the peak values of permittivity gradually decreased and shifted to low temperature. The Ba0.60Sr0.40TiO3 added with 0.5 wt% MgCo2(VO4)2 possesses a dielectric constant of 2763, Q value of 267 at ~1 GHz and tunability of 35.9% under dc electric field of 30 kV/cm at 10 kHz.  相似文献   

8.
Commercial glass frits (lead borosilicate glasses) were employed as the sintering aids to reduce the sintering temperatures of BST ceramics. The effects of the glass content and the sintering temperature on the microstructures, dielectric properties and tunabilities of BST ceramics have been investigated. Densification of BST ceramics of 5 wt% glass content becomes significant from sintering temperature of 1000 °C. The glass content shows a strong influence on the Curie temperature Tc, permittivity and the diffuse transition. X-ray results show all BST ceramics exhibit a perovskite structure and also the formation of a secondary phase, Ba2TiSi2O8. The shift of BST diffraction peaks towards higher angle with increasing the glass content indicates the substitution of Pb2+ in Ba2+ site, which mainly accounts for the diffuse transition observed in these BST ceramics. BST ceramics with 10 wt% glass additives possess the highest tunability at all four sintering temperatures. A tunability of 12.2% at a bias field of 1 kV/mm was achieved for BST ceramics with 10 wt% glass content sintered at 900 °C.  相似文献   

9.
(1 ? x)Ba0.4Sr0.6TiO3xBaMoO4 ceramics with x = 5, 10, 20, 30, 40 and 60 wt% were prepared by traditional solid-state reaction method. Two crystalline phases, a cubic perovskite structure Ba0.4Sr0.6TiO3 (BST) and a tetragonal scheelite structure BaMoO4 (BM) were obtained by XRD analysis. The microwave dielectric properties of Ba0.4Sr0.6TiO3–BaMoO4 composite ceramics were investigated systematically. The results show that the composite ceramics exhibited promising microwave properties. The dielectric constant can be adjusted in the range from 900 to 78, while maintaining relatively high tunability from 27.3% to 12.8% under a direct current electric field of 60 kV/cm and Q values from 619 to 67 in the gigahertz frequency region.  相似文献   

10.
Low-fired ferroelectric glass ceramics were fabricated from glass powders with a basic composition of 0.65BaTiO3·0.27SiO2·0.08Al2O3. The combined addition of SnO2 (or ZrO2) and SrCO3 was conducted to modify the dielectric properties of the glass ceramics. The Sr-component could be incorporated preferentially in the perovskite structure after heating at 1000 °C. The bulk and thick film samples obtained by sintering glass powder with a starting composition of 0.65(Ba0.7Sr0.3)(Ti0.85Sn0.15)O3·0.27SiO2·0.08Al2O3 at 1000 °C for 24 h showed a broadened ɛrT relation with Tc  10 °C and ɛr(max)  280 and microwave tunability of 32% at 3 GHz, respectively.  相似文献   

11.
We have investigated systematically the differences of silver cofirability and microwave dielectric properties between Zn3Nb2O8 and Bi1.5Zn0.92Nb1.5O6.92 (BZN). Two type dopants: 0.29BaCO3–0.71CuO (BC) and 0.81MoO3–0.19CuO (MC) were used in Zn3Nb2O8 and Bi1.5Zn0.92Nb1.5O6.92 ceramics so they can be cofired with silver. The BC-doped ceramics in general have better dielectric properties than those of MC-doped ceramics. The BC-doped Zn3Nb2O8 exhibits better dielectric properties than those of BC-doped BZN (k = 14.7, Q × f = 8200 GHz versus k = 120.1, Q × f = 1050 GHz). For silver compatibility study, the interfacial behaviors between microwave dielectric materials and silver were investigated by using X-ray diffractometer, scanning electronic microscope, and electronic probe microanalyzer. No new crystalline phase and no silver migration behavior were found in the BC-doped Zn3Nb2O8 ceramics cofired with silver, but slight silver migration was detected for BC-doped BZN. But slight silver migration was detected for MC-doped Zn3Nb2O8 and BZN ceramics cofired with silver. Therefore, the good overall properties of BC-doped Zn3Nb2O8 are suitable for microwave applications.  相似文献   

12.
Low-temperature dielectric properties of BaZn1/3Nb2/3O3-based ceramics, CeO2-based ceramics and Ruddlesden–Popper Srn+1TinO3n+1 (n = 1–4) ceramics has been studied in microwave, THz and infrared frequency range down to 10 K. Extrinsic dielectric losses originating probably from diffusion of charged defects are observed in two families of compounds by a minimum in the temperature dependence of microwave quality Q. The rise of microwave permittivity and dielectric losses at low temperatures in Srn+1TinO3n+1 (n = 2–4) ceramics was explained by softening of an optical polar mode in SrTiO3, which is in the Srn+1TinO3n+1 (n = 3, 4) ceramics contained as a second phase.  相似文献   

13.
Li2O–Nb2O5–TiO2 based ceramic systems have been the candidate materials for LTCC application, due to their high dielectric constant and Q × f value and controllable temperature coefficient in the microwave region. However, the sintering temperature was relatively higher (above 1100 °C) for practical application. In this study, dielectric properties of Li(1+xy)Nb(1−x−3y)Ti(x+4y)O3 solid solution were studied with different x and y contents and among them, the Li1.0Nb0.6Ti0.5O3 composition (x = 0.1, y = 0.1) was selected, due to its reasonable dielectric properties to determine the possibility of low temperature sintering. The effects of 0.17Li2O–0.83V2O5, as a sintering agent, on sinterability and microwave dielectric properties of Li1.0Nb0.6Ti0.5O3 ceramics were investigated as a function of the sintering agent content and sintering temperature. With addition of 0.17Li2O–0.83V2O5 above 0.5 wt%, the specimens were well densified at a relatively lower temperature of 850 °C. Only slight decrease in apparent density was observed with increasing 0.17Li2O–0.83V2O5 content above 0.75 wt%. In the case of 0.5 wt% 0.17Li2O–0.83V2O5 addition, the values of dielectric constant and Q × f reached maximum. Further addition caused inferior microstructure, resulting in degraded dielectric properties. For the specimens with 0.5 wt% 0.17Li2O–0.83V2O5 sintered at 850 °C, dielectric constant, Q × f and TCF values were 64.7, 5933 GHz and 9.4 ppm per °C, respectively.  相似文献   

14.
Dielectric properties of Ba0.5Sr0.5TiO3xZn2P2O7 (x = 1, 3, 5, 10, 15 wt%) composite ceramics, which were prepared by solid-state reaction process, were intensively investigated. The results showed that the Curie temperature (Tc) of composites gradually shifted to lower temperature (?140 °C) with increasing the content of Zn2P2O7, and the dielectric constant were tuned effectively from 2020 to 107, while maintaining a relatively high tunability. Zn2P2O7 additions remarkably inhibited the grain growth of Ba0.5Sr0.5TiO3 phases, and improved the breakdown strength of samples up to 385 kV/cm. The sample with x = 10 wt% exhibited good dielectric properties (?r = 290, tg δ = 0.0006, T = 20.5%, BDS = 297 kV/cm). Meanwhile Zn2P2O7 addition also made the Tc far away from the room temperature, which reduced the sensitivity of the dielectric constant to temperature change and simultaneously improved the stability of materials.  相似文献   

15.
The effect of B-site cation deficiency on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 (BCN) was investigated. Stoichiometric and co-deficient compositions based on Ba(Co1/3−xNb2/3)O3 [x = 0.0, 0.01, 0.02, 0.03 and 0.04] were prepared using the conventional mixed oxide route. Small amounts of V2O5 (0.1 wt%) were added to promote densification. The dielectric loss is very sensitive to the composition; it was found that co-deficiency degraded the microwave dielectric properties. The stoichiometric formulation (x = 0) exhibited the best microwave properties. The improvements in the microwave dielectric properties were achieved by increasing the degree of 1:2 cation ordering. The highly ordered, stoichiometric BCN ceramics showed a relative permittivity (ɛr) of 32, quality factor (Q × f) of 66,500 GHz and a negative temperature coefficient of resonant frequency (τf) of −10 ppm/°C at 4 GHz.  相似文献   

16.
Pseudobrookite-type Mg5Nb4O15 ceramics were prepared by aqueous sol–gel process and microwave dielectric properties were investigated. Highly reactive nanosized Mg5Nb4O15 powders were successfully synthesized at 600 °C in oxygen atmosphere with particle sizes of 20–40 nm firstly and then phase evolution was detected by DTA-TG and XRD. Sintering characteristics and microwave dielectric properties of Mg5Nb4O15 ceramics were studied at different temperatures ranging from 1200 °C to 1400 °C. With the increase of sintering temperature, density, ?r and Q·f values increased, and then saturated at 1300 °C. Excellent microwave properties of ?r ~11.3, Q·f ~43,300 GHz and τf ~?58 ppm/°C, were obtained finally. The sintering temperature of Mg5Nb4O15 ceramics was significantly reduced by aqueous sol–gel process compared to conventional solid-state methods.  相似文献   

17.
Layered perovskite-type niobates A5Nb4O15 (A = Ba, Sr) are thought to be good candidates for microwave dielectric and water-splitting applications, but traditional solid-state syntheses of these compounds usually require high temperatures and complicated procedures. In this work, Ba5?xSrxNb4O15 (x = 0 ? 5) perovskite solid solutions were obtained using a facile molten salt synthetic method. The crystal structure of Ba5?xSrxNb4O15 solid solutions were characterized by X-ray diffraction (XRD). Crystal structure parameters with different Sr2+ concentrations show that the lattice parameters and unit cell volumes of Ba5?xSrxNb4O15 decrease with increasing [Sr2+]. The humidity sensing behavior of Ba5?xSrxNb4O15 solid solutions was investigated over a wide relative humidity (RH) range, from 11% to 95%. Ba2Sr3Nb4O15 shows the highest sensitivity among the obtained samples with a humidity hysteresis of ca. 4% RH. The response-recovery times of the Ba2Sr3Nb4O15 sensor are only 2 s and 17 s as the humidity alternates between 11% and 95% RH, respectively, showing excellent potential as a humidity sensing material for practical applications.  相似文献   

18.
Sr0.7Ba0.3Nb2O6 (SBN70) ceramics were prepared by conventional sintering (CS) and microwave sintering (MWS) techniques. High-density ceramics were obtained by the MWS method in 2 h of cycle time, whereas it took 14 h by the CS method. Samples prepared by both sintering techniques showed single phase formation according to XRD results. It was observed that MWS SBN70 ceramics showed better densification and more uniform grain size than those of CS samples. The dielectric characteristics of both samples showed diffuse phase transition phenomenon features, which was confirmed by linear fitting of the modified Curie–Weiss law. Besides, the relaxor ferroelectric properties of both samples followed the Vogel–Fulcher relationship well. The value of spontaneous polarization (Ps) and the P–E hysteresis loop for MWS samples were significantly higher and slimmer than those of the CS samples, respectively.  相似文献   

19.
The effects of ZnB2O4 glass additions on the sintering temperature and microwave dielectric properties of Ba3Ti5Nb6O28 have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ɛr of 37.0, τf of −12 ppm/°C. It was found that the addition of ZnB2O4 glass to Ba3Ti5Nb6O28 lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases. Also the addition of ZnB2O4 glass enhanced the microwave dielectric properties: Q × f of 19,100 GHz, ɛr of 36.6, τf of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

20.
Complex perovskites with large-sized B′-site cations, (Sr1−xBax)(Sr0·33+yTa0·67-y)O3−δ (0  x  1, 0  y≦ 0·17), were fabricated to examine the transformation behavior between the (1:1) and (1:2) order types and dielectric property change with A-site cation substitution. The (1:2) type order was found to appear in a limited Ba-rich composition range. Structural strain induced by size difference between the A-site and large-sized B′-site cations might be responsible for the occurrence of the (1:1) type order in perovskite compounds substituted with more than 50% Sr2+ on the A-site sublattice. Low εr and positive temperature coefficient of εr observed for the (1:2) ordered samples were explained by the restricted ion movement in the (1:2) type order array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号