首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrodynamic effects on cells in agitated tissue culture reactors   总被引:4,自引:0,他引:4  
Tissue cells are known to be sensitive to mechanical stresses imposed on them by agitation in bioreactors. The amount of agitation provided in a microcarrier or suspension bioreactor should be only enough to provide an effective homogeneity. Three distinct flow regions can be identified in the reactor: bulk turbulent flow, bulk laminar flow, and boundary-layer flows. Possible mechanisms of cell damage are examined by analyzing the motion of microcarriers or free cells relative to the surrounding fluid, to each other, and to moving or stationary solid surfaces. The primary mechanisms of cell damage appear to result from (a) direct interaction between microcarriers and turbulent eddies, (b) collisions between microcarriers in turbulent flow, and (c) collisions against the impeller or other stationary surfaces. If the smallest eddies of turbulent flow are of the same size as the microcarrier beads, they may cause high shear stresses on the cells. Eddies the size of the average interbead spacing may cause bead-bead collisions which damage cells. The severity of the collisions increases when the eddies are also of the same size as the beads. Bead size and the interbead distance are virtually equal in typical microcarrier suspensions. Impeller collisions occur when the beads cannot avoid the impeller leading edge as it advances through the liquid. The implications of the results of this analysis on the design and operation of tissue culture bioreactors are also discussed.  相似文献   

2.
Mass transfer, mixing times and power consumption were measured in rigid disposable stirred tank bioreactors and compared to those of a traditional glass bioreactor. The volumetric mass transfer coefficient and mixing times are usually determined at high agitation speeds in combination with sparged aeration as used for single cell suspension and most bacterial cultures. In contrast, here low agitation speeds combined with headspace aeration were applied. These settings are generally used for cultivation of mammalian cells growing adherent to microcarriers. The rigid disposable vessels showed similar engineering characteristics compared to a traditional glass bioreactor. On the basis of the presented results appropriate settings for adherent cell culture, normally operated at a maximum power input level of 5 W m?3, can be selected. Depending on the disposable bioreactor used, a stirrer speed ranging from 38 to 147 rpm will result in such a power input of 5 W m?3. This power input will mix the fluid to a degree of 95% in 22 ± 1 s and produce a volumetric mass transfer coefficient of 0.46 ± 0.07 h?1. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1269–1276, 2014  相似文献   

3.
生物反应器已成为哺乳动物细胞生产治疗性抗体药物和疫苗的核心。文中采用CFD数值模拟方法对目前常用的机械搅拌式生物反应器在不同的搅拌形式下的流场进行了分析,获得了5种搅拌桨型组合条件下的速率矢量、持气率、含气率和剪切力分布的特征。通过构建的重组CHO细胞在不同搅拌形式条件下的流加分批培养发现,细胞密度和抗体表达水平与反应器内的最大剪切率直接相关,在FBMI3搅拌形式下细胞密度和抗体表达水平均最高。结果表明该CHO细胞在悬浮培养时对剪切环境比较敏感,且最大剪切力是工业规模放大的关键因素。  相似文献   

4.
Rotondi  Marco  Grace  Ned  Betts  John  Bargh  Neil  Costariol  Elena  Zoro  Barney  Hewitt  Christopher J.  Nienow  Alvin W.  Rafiq  Qasim A. 《Biotechnology letters》2021,43(5):1103-1116

The emergence of cell and gene therapies has generated significant interest in their clinical and commercial potential. However, these therapies are prohibitively expensive to manufacture and can require extensive time for development due to our limited process knowledge and understanding. The automated ambr250® stirred-tank bioreactor platform provides an effective platform for high-throughput process development. However, the original dual pitched-blade 20 mm impeller and baffles proved sub-optimal for cell therapy candidates that require suspension of microcarriers (e.g. for the culture of adherent human mesenchymal stem cells) or other particles such as activating Dynabeads® (e.g. for the culture of human T-cells). We demonstrate the development of a new ambr250® stirred-tank bioreactor vessel which has been designed specifically to improve the suspension of microcarriers/beads and thereby improve the culture of such cellular systems. The new design is unbaffled and has a single, larger elephant ear impeller. We undertook a range of engineering and physical characterizations to determine which vessel and impeller configuration would be most suitable for suspension based on the minimum agitation speed (NJS) and associated specific power input (P/V)JS. A vessel (diameter, T, = 60 mm) without baffles and incorporating a single elephant ear impeller (diameter 30 mm and 45° pitch-blade angle) was selected as it had the lowest (P/V)JS and therefore potentially, based on Kolmogorov concepts, was the most flexible system. These experimentally-based conclusions were further validated firstly with computational fluid dynamic (CFD) simulations and secondly experimental studies involving the culture of both T-cells with Dynabeads® and hMSCs on microcarriers. The new ambr250® stirred-tank bioreactor successfully supported the culture of both cell types, with the T-cell culture demonstrating significant improvements compared to the original ambr250® and the hMSC-microcarrier culture gave significantly higher yields compared with spinner flask cultures. The new ambr250® bioreactor vessel design is an effective process development tool for cell and gene therapy candidates and potentially for autologous manufacture too.

  相似文献   

5.
The present article describes two novel flexible plastic-based disposable bioreactors. The first one, the WU bioreactor, is based on the principle of a wave and undertow mechanism that provides agitation while offering convenient mixing and aeration to the plant cell culture contained within the bioreactor. The second one is a high aspect ratio bubble column bioreactor, where agitation and aeration are achieved through the intermittent generation of large diameter bubbles, "Taylor-like" or "slug bubbles" (SB bioreactor). It allows an easy volume increase from a few liters to larger volumes up to several hundred liters with the use of multiple units. The cultivation of tobacco and soya cells producing isoflavones is described up to 70 and 100 L working volume for the SB bioreactor and WU bioreactor, respectively. The bioreactors being disposable and pre-sterilized before use, cleaning, sterilization, and maintenance operations are strongly reduced or eliminated. Both bioreactors represent efficient and low cost cell culture systems, applicable to various cell cultures at small and medium scale, complementary to traditional stainless-steel bioreactors.  相似文献   

6.
Performance of mammalian cell culture bioreactor with a new impeller design   总被引:3,自引:0,他引:3  
To improve the oxygen transfer in a mammalian cell bioreactor, a new type of impeller consisting of a double-screen concentric cylindrical cage impeller (annular cage impeller in short) was designed and its mass transfer rate evaluated. This new impeller design increases the specific screen area, and the convective mass transfer rate through the annular cage was significantly increased. The oxygen transfer rates with the new impeller and the commercially available cell-lift impeller (CelliGen by New Brunswick Scientific Co.) were evaluated and their performance compared at various rates of aeration and agitation. The results showed that with the new impeller, the oxygen transfer rate was increased by 19% in water and 21% in cell-free culture medium supplemented with 10% horse serum, the total hybridoma cell concentration was increased to 3.4 x 10(7) cells/mL, and the IgG(1) subtype monoclonal antibody (MAb) product concentration was also increased to 512 mg/L in perfusion culture of murine hybridoma cell line 62'D3. These improvements in oxygen transfer rate, cell concentration, and MAb product concentration are all very significant. The mass transfer resistance in the cell-lift impeller system was found to be mainly due to the surface area of the single-screen cage impeller. The new annular cage impeller not only provided the increased surface area for convective oxygen transfer but also protected cells from hydrodynamic shear damage, thereby achieving a significant bioprocess improvement in terms of higher viable cell concentration, higher product concentration, and higher oxygen transfer rate in the mammalian cell bioreactor system.  相似文献   

7.
Recent advances in mammalian, insect, and stem cell cultivation and scale-up have created tremendous opportunities for new therapeutics and personalized medicine innovations. However, translating these advances into therapeutic applications will require in vitro systems that allow for robust, flexible, and cost effective bioreactor systems. There are several bioreactor systems currently utilized in research and commercial settings; however, many of these systems are not optimal for establishing, expanding, and monitoring the growth of different cell types. The culture parameters most challenging to control in these systems include, minimizing hydrodynamic shear, preventing nutrient gradient formation, establishing uniform culture medium aeration, preventing microbial contamination, and monitoring and adjusting culture conditions in real-time. Using a pneumatic single-use bioreactor system, we demonstrate the assembly and operation of this novel bioreactor for mammalian cells grown on micro-carriers. This bioreactor system eliminates many of the challenges associated with currently available systems by minimizing hydrodynamic shear and nutrient gradient formation, and allowing for uniform culture medium aeration. Moreover, the bioreactor’s software allows for remote real-time monitoring and adjusting of the bioreactor run parameters. This bioreactor system also has tremendous potential for scale-up of adherent and suspension mammalian cells for production of a variety therapeutic proteins, monoclonal antibodies, stem cells, biosimilars, and vaccines.  相似文献   

8.
Since 1969 much attention has been devoted to the useof spinfilter systems for retention of mammalian cellsin continuous perfusion cultivations. Previousinvestigations dealt with hydrodynamic conditions,fouling processes and upscaling. But hydrodynamicconditions and fouling processes seem to have asecondary importance in spinfilter performance duringauthentic perfusion cultivations. Obviously,alterations in culture condition are more relevantespecially during long-term processes. Therefore, ourpratical approach focussed on the performance qualityof a commercially available 20 m spinfilterduring a perfusion cultivation of a recombinant CHOcell line in pilot scale regarding the followingissues: 1) retention of viable cells in thebioreactor; 2) removal of dead cells and cell debrisfrom the bioreactor; 3) alterations in culturecondition; and 4) changes in perfusion mode.Furthermore, we tested the performance of 20 mspinfilters in 2 and 100 l pilot scale using solidmodel particles instead of cells. Our investigationsshowed that retention of viable cells in pilot scalewas independent of spinfilter rotation velocity andperfusion rate; the retention increased from 75 to 95%corresponding to operation time, enlarging celldiameter and enhanced formation of aggregates in theculture during the perfusion cultivation. By means ofthe Cell Counter and Analyzer System (CASY) anoperation cut off of 13 m was determined forthis spinfilter. Using solid model particles in 2 lscale, optimal retention was achieved at a tip speedof 0.43 m s-1 (141 rpm) – furtherenhancement of spinfilter rotation velocity up to0.56 m s-1 (185 rpm) decreased the retentionrapidly. In pilot scale best retention performance wasobtained with tip speeds of 0.37 m s-1(35 rpm) and 1.26 m s-1 (120 rpm). Hence,significant retention in pilot scale could already beachieved with low agitation. Therefore, the additionof shear force protectives could be avoided so thatthe purification of the target protein from thesupernatant would be facilitated.  相似文献   

9.
Disposable bioreactor for cell culture using wave-induced agitation   总被引:4,自引:0,他引:4  
Vijay Singh 《Cytotechnology》1999,30(1-3):149-158
This work describes a novel bioreactor system for the cultivation of animal, insect, and plant cells using wave agitation induced by a rocking motion. This agitation system provides good nutrient distribution, off-bottom suspension, and excellent oxygen transfer without damaging fluid shear or gas bubbles. Unlike other cell culture systems, such as spinners, hollow-fiber bioreactors, and roller bottles, scale-up is simple, and has been demonstrated up to 100 L of culture volume. The bioreactor is disposable, and therefore requires no cleaning or sterilization. Additions and sampling are possible without the need for a laminar flow cabinet. The unit can be placed in an incubator requiring minimal instrumentation. These features dramatically lower the purchase cost, and operating expenses of this laboratory/pilot scale cell cultivation system. Results are presented for various model systems: 1) recombinant NS0 cells in suspension; 2) adenovirus production using human 293 cells in suspension; 3) Sf9 insect cell/baculovirus system; and 4) human 293 cells on microcarrier. These examples show the general suitability of the system for cells in suspension, anchorage-dependent culture, and virus production in research and GMP applications. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The effects of the impeller configuration, aeration rate, and agitation speed on oxygen transfer coefficient K(L)a were studied in a newly designed centrifugal impeller bioreactor (5-L). The oxygen transfer rates in the novel bioreactor were also compared with those in a cell-lift bioreactor with comparable dimensions. The cell-lift impeller produced much higher surface oxygen transfer rates than the centrifugal one at an agitation speed over 200 rpm. This result was in good agreement with our observation that the cell-lift impeller produced much higher unfavorable turbulence. In addition, the experiments using granulated agar particles as pseudo plant cells indicated that the K(L)a value decreased steadily with an increase in agar particle concentration, and the centrifugal impeller still demonstrated a larger K(L)a than the cell lift up to a high pseudo cell concentration of 19.5 g dry weight (DW)/L (under 150 rpm and 0.20 vvm) or 22.3 g DW/L (under 200 rpm and 0.20 vvm). Furthermore, the correlation between power number and impeller Reynolds number for both the centrifugal and the cell-lift impellers was successfully obtained, which could be used for predicting the power input required by each impeller. From the results obtained, the centrifugal impeller bioreactor is expected to have great potential in its application to shear-sensitive biological systems.  相似文献   

11.
The Braun Biostat BF2 bioreactor system employs a novel aeration and agitation system, designed to enhance gaseous exchange and reduce shear stresses on submerged cell suspension cultures. The Biostat BF2 bioreactor employs a central pivoting spindle, around which the aeration tubing is wound forming a large paddle-type structure suspended from the top-plate and swung in a circle by a solid-state magnetic stirrer.The aeration tubing is a polypropylene capillary membrane, which has a unique microporous structure and is ideal for aeration, permitting two-way, bubble-free, gaseous exchange of the medium. This tubing can be rendered porous and can be used in the perfusion of aqueous solutions, enabling cell-free media exchange to be conducted. Thin-walled silicone rubber tubing, although gas permeable to a degree, cannot be made porous to aqueous solutions.The bioreactor was inoculated with a suspension culture of Sitka spruce (Picea sitchensis [Bong.] Carr.) known to be embryogenic and capable of maturing to plantlets on solidified medium. The perfusion capability of the bioreactor was employed to replace the inital proliferation medium with maturation medium in order to induce the development of the somatic embryos in submerged cell culture. The size ratio of the somatic embryo heads was monitored over 7 weeks. This cell line was found to mirror just the initial elongation, previously observed in shake-flask culture.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - SSPM Selby Sitka proliferation medium - SSMM Selby Sitka maturation medium The following was presented at the NERC TBLG '95 Meeting as the Bioreactor Workshop  相似文献   

12.
Previously, Su et al. [Biotechnol Bioeng 42: 884–890 (1993)] reported improved production of rosmarinic acid by Anchusa officinalis in shake-flask cultures using a cultivation strategy that involved intermittent medium exchange. Implementation of this cultivation strategy in 2.5-1 stirred-tank bioreactor cultures is investigated in the present study. Intermittent cell/medium separation in the bioreactor was accomplished by means of automated in situ culture filtration. In the bioreactor culture, rosmarinic acid production was found very sensitive to agitation and aeration conditions as well as dissolved oxygen concentration. A maximum cell density of 35 g dry weight/l and a rosmarinic acid concentration of 3.7 g/l were obtained by maintaining the dissolved oxygen concentration above 30% air saturation, gradually raising the impeller tip speed from 34 cm/s to 72 cm/s, and keeping the aeration rate at 0.44 vvm while increasing the O2: air ratio in the gas feed stream to 4:1. This result is comparable with the data obtained from shake-flask cultures using the same culture strategy.  相似文献   

13.
搅拌式生物反应器悬浮培养水母雪莲细胞的研究   总被引:7,自引:0,他引:7  
应用 2L通气搅拌式生物反应器一步批式培养水母雪莲细胞。采用倾斜式搅拌桨代替透平桨 ,研究了搅拌转速、通气量和接种量对细胞生长和黄酮合成的影响 ,发现在 75r min、70 0~1000L min和 4.0~ 5.0gDCW L接种量下细胞生长和黄酮合成比较好。经过 12d培养细胞干重达 13.8gDCW L ,黄酮产量 416mg L ,黄酮含量占细胞干重的 30%。水母雪莲细胞生长及黄酮合成的进程表明 ,黄酮积累与细胞生长呈正相关。对细胞聚集体分布的研究发现 ,流变压力使细胞聚集体分裂 ,使反应器中细胞生长受到影响 ,黄酮产量较摇瓶中降低  相似文献   

14.
Moran E 《Cytotechnology》1999,29(2):135-149
Veterinary viral vaccines generally comprise either attenuated or chemically inactivated viruses which have been propagated on mammalian cell substrates or specific pathogen free (SPF) eggs. New generation vaccines include chemically inactivated virally-infected whole cell vaccines. The NM57 cell line is a bovine nasal turbinate persistently infected (non-lytic infection) with a strain of the respiratory syncytial virus (RSV). The potential of microcarrier technology for the cultivation in bioreactors of this anchorage dependent cell line for RSV vaccine production has been investigated. Both Cytodex 3 and Cultispher S microcarriers proved most suitable from a selection of microcarriers as growth substrates for this NM57 cell line. Maximum cell densities of 4.12×105 cells ml-1and 5.52×105 cells ml-1 respectively were obtained using Cytodex 3 (3 g l-1) and and Cultispher S (1 g l-1) in 5 l bioreactor cultures. The fact that cell growth was less sensitive to agitation rate when cultured on Cultispher S microcarriers, and that cells were efficiently harvested from this microcarrier by an enzymatic method, suggested Cultispher S is suitable for further evaluation at larger bioreactor scales (>5 l) than that described here. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Hydrodynamic effects on BHK cells grown as suspended natural aggregates   总被引:1,自引:0,他引:1  
Baby hamster kidney (BHK) cell aggregates grown in stirred vessels with different working volumes and impeller sizes were characterized. Using batch cultures, the range of agitation rates studied (25-100 rpm) led to aggregates with maximum sizes of 150 mum. Necrotic centers were not observed and cell specific productivity was independent of aggregate size. High cell viability was found for both single and adherent cells without an increase in cell death when agitation rate was increased. The increase in agitation rate affected aggregates by reducing their size and increasing their concentration and cell concentration in aggregates, while increasing the fraction of free cells in suspension. The experimental relationship between aggregate size and power dissipation rate per unit of mass was close to -1/4, suggesting a correlation with a critical turbulence microscale; this was independent of vessel scale and impeller geometry over the range investigated. Viscous stresses in the viscous dissipation subrange (below Kolmogoroff eddies) appear to be responsible for aggregate breakage. Under intense agitation BHK cells grown in the absence of microcarriers existed as aggregates without cell damage, whereas cells grown on the surface of microcarriers were largely reduced. This is a clear advantage for scaleup purposes if aggregates are used as a natural immobilization system in stirred vessels. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
The effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, NJS, for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8–10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier. An increase in microcarrier concentration or seeding density generally had a deleterious or neutral effect, as previously observed for human fibroblast cultures. The choice of impeller was significant, as was incorporation of a 1 day delay before agitation to allow initial attachment of cells. The best conditions for cell expansion on the microcarriers in the flasks were 3,000 microcarriers ml−1 (ca. 1 g dry weight l−1), a seeding density of 5 cells per microcarrier with a 1 day delay before agitation began at NJS (30 rpm), using a horizontally suspended flea impeller with an added vertical paddle. These findings were interpreted using Kolmogorov’s theory of isotropic turbulence.  相似文献   

17.
We developed a cell suspension culture system for zedoary (Curcuma zedoaria Roscoe), using 100 g fresh weight inoculum in a batch culture. The maximum cell biomass of 68.46 g/L fresh weight was obtained after 14 days of culture in a 10 L bioreactor with a pitch-blade impeller maintained at an agitation speed of 150 rpm and an aeration rate of 2.5 L/min. The accumulation of sesquiterpenes and polysaccharide in zedoary cells from 2 to 18 days was measured by HPLC and a phenol-sulfuric acid assay, respectively. The total polysaccharide concentration increased between 2 to 10 days of culture and reached a maximum value of 6.55%. HPLC revealed several eluted peaks of sesquiterpenes, which increased in amplitude from days 2 to 10. Furthermore, our results indicated that biotransformation occurred in the cell suspension, transforming certain sesquiterpenes into other types during culture.  相似文献   

18.
Polystyrene microcarriers were prepared in four size ranges (53–63 m, 90–125 m, 150–180 m and 300–355 m) and examined for ability to support attachment and growth of human diploid fibroblasts. Cells attached rapidly to the microcarriers and there was a direct relationship between cell attachment and microcarrier aggregation. Phasecontrast and scanning electron microscopic studies revealed that while aggregation was extensive, most of the aggregate consisted of void volume. Cell growth studies demonstrated that human diploid fibroblasts proliferated well in microcarrier aggregates, reaching densities of 2.5–3×106 cells per 2 ml dish after 6 days from an inoculum of 0.5×106 cells per dish. When cells were added to the microcarriers at higher density (up to 5×106 cells per 2-ml culture), there was little net growth but the cells remained viable over a 7-day period. In contrast, cells died when plated under the same conditions in monolayer culture. When the microcarriers were used in suspension culture, rapid cell attachment and rapid microcarrier aggregation also occurred. In 100-ml suspension culture, a cell density of 0.7×106 cells per ml was reached after 7 days from an inoculum of 0.1×106 cells. Based on these data, we conclude that microcarrier aggregation is not detrimental to fibroblast growth. These data also indicate that small microcarriers (53–63 m) (previously thought to be too small to support the growth of diploid fibroblasts) can support fibroblast growth and this occurs primarily because microcarriers in this size range efficiently form aggregates with the cells.  相似文献   

19.
We present detailed quantitative measurement analyses for flow in a spinner flask with spinning rates between 20 to 45 RPM, utilizing the optical velocimetry measurement technique of Particle Image Velocimetry (PIV). A partial section of the impeller was immersed in the working fluid to reduce the shear forces induced on the cells cultured on microcarriers. Higher rotational speeds improved the mixing effect in the medium at the expense of a higher shear environment. It was found that the mouse induced pluripotent stem (iPS) cells achieved the optimum number of cells over 7 days in 25 RPM suspension culture. This condition translates to 0.0984 Pa of maximum shear stress caused by the interaction of the fluid flow with the bottom surface. However, inverse cell growth was obtained at 28 RPM culture condition. Such a narrow margin demonstrated that mouse iPS cells cultured on microcarriers are very sensitive to mechanical forces. This study provides insight to biomechanical parameters, specifically the shear stress distribution, for a commercially available spinner flask over a wide range of Reynolds number.  相似文献   

20.
Cellulase-free xylanase production by T. lanuginosus MH4 was investigated in a 3-litre stirred tank bioreactor under different agitation rates and an aeration rate of 1v/v/m. The cultivation time in the bioreactor was reduced significantly over that in shake culture conditions. A xylanase productivity of 0.1 mkat1–1h–1 was achieved on xylan in the bioreactor. This was nearly double to that obtained in shake culture. The agitation rates influenced both growth and enzyme secretion in the bioreactor. The highest level of biomass concentration and activities of both xylanase and -xylosidase were obtained at 150 revmin–1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号