首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiwall carbon nanotubes (MWNTs) were melt‐mixed in polyamide 6 (PA6) and acrylonitrile–butadiene–styrene (ABS) copolymer blends using a simultaneous mixing protocol in order to investigate the state of dispersion of MWNTs in PA6/ABS blends. The blend composition was varied from 40/60 (wt/wt) to 60/40 (wt/wt) in PA6/ABS blends, which showed ‘co‐continuous’ morphology in the presence of MWNTs. State of dispersion of MWNTs in these blends was assessed through bulk electrical conductivity measurements, morphological analysis, solution experiments, and UV‐vis spectroscopic analysis. MWNTs were subsequently modified with a novel organic modifier, sodium salt of 6‐aminohexanoic acid (Na‐AHA), to improve the state of dispersion of MWNTs. Blends with unmodified MWNTs exhibited the DC electrical conductivity in the range ~10?11 to ~10?5 S/cm, whereas blends with Na‐AHA‐modified MWNTs exhibited DC electrical conductivity in the range ~10?7 to ~10?5 S/cm. The reduction in MWNTs ‘agglomerate’ size (~73.7 μm for 40/60 blend with unmodified MWNTs to ~59.9 μm in the corresponding blend with Na‐AHA‐modified MWNTs) was observed through morphological analysis. The rheological studies showed increased complex viscosity and storage moduli in lower frequency region in case of blends with Na‐AHA‐modified MWNTs confirming a refined ‘network‐like’ structure of MWNTs. POLYM. ENG. SCI., 55:443–456, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
Styrene‐acrylonitrile random copolymer (SAN) and polyarylate (PAr) block copolymer were applied as a reactive compatibilizer for polyamide‐6 (PA‐6)/acrylonitrile‐butadiene‐styrene (ABS) copolymer blends. The SAN–PAr block copolymer was found to be effective for compatibilization of PA‐6/ABS blends. With the addition of 3.0–5.0 wt % SAN–PAr block copolymer, the ABS‐rich phase could be reduced to a smaller size than 1.0 μm in the 70/30 and 50/50 PA‐6/ABS blends, although it was several microns in the uncompatibilized blends. As a result, for the blends compatibilized with 3–5 wt % block copolymer the impact energy absorption reached the super toughness region in the 70/30 and 50/50 PA‐6/ABS compositions. The compatibilization mechanism of PA‐6/ABS by the SAN–PAr block copolymer was investigated by tetrahydrofuran extraction of the SAN–PAr block copolymer/PA‐6 blends and the model reactions between the block copolymer and low molecular weight compounds. The results of these experiments indicated that the SAN–PAr block copolymer reacted with the PA‐6 during the melt mixing process via an in situ transreaction between the ester units in the PAr chain and the terminal amine in the PA‐6. As a result, SAN–PAr/PA‐6 block copolymers were generated during the melt mixing process. The SAN–PAr block copolymer was supposed to compatibilize the PA‐6 and ABS blend by anchoring the PAr/PA‐6 and SAN chains to the PA‐6 and ABS phases, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2300–2313, 2002  相似文献   

3.
Polyamide 6 (PA 6) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in proportions of 75/25, 50/50, and 25/75) from two melt twin‐screw extruders to prepare three PA 6/m‐iPP conjugated filaments. This study investigated the physical properties of PA 6/m‐iPP conjugated filaments with gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, potentiometry, rheometry, density‐gradient measurements, wide‐angle X‐ray diffraction, extension stress–strain measurements, and scanning electron microscopy. The flow behavior of PA 6/m‐iPP polyblended polymers exhibited negative‐deviation blends, and a 50/50 PA 6/m‐iPP blend showed the minimum value of the melt viscosity. The experimental results from differential scanning calorimetry indicated that PA 6 and m‐iPP molecules formed an immiscible system. The tenacity of the PA 6/m‐iPP conjugated filaments decreased initially and then increased as the m‐iPP content increased. The crystallinities and densities of the PA 6/m‐iPP conjugated filaments had a linear relationship with the blend ratio. Morphological observations revealed that the blends had a dispersed‐phase structure. A pore/fiber morphology of a larger size (from 0.5 to 3 μm in diameter) was observed after a formic acid (PA 6 was moved)/xylene (m‐iPP was moved) treatment on the cross section of a PA 6/m‐iPP conjugated filament. PA 6 and m‐iPP polymers were proved to be an incompatible system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1471–1476, 2006  相似文献   

4.
In a blend of two immiscible polymers a controlled morphology can be obtained by adding a block or graft copolymer as compatibilizer. In the present work blends of low‐density polyethylene (PE) and polyamide‐6 (PA‐6) were prepared by melt mixing the polymers in a co‐rotating, intermeshing twin‐screw extruder. Poly(ethylene‐graft‐polyethylene oxide) (PE‐PEO), synthesized from poly(ethylene‐co‐acrylic acid) (PEAA) (backbone) and poly(ethylene oxide) monomethyl ether (MPEO) (grafts), was added as compatibilizer. As a comparison, the unmodified backbone polymer, PEAA, was used. The morphology of the blends was studied by scanning electron microscopy (SEM). Melting and crystallization behavior of the blends was investigated by differential scanning calorimetry (DSC) and mechanical properties by tensile testing. The compatibilizing mechanisms were different for the two copolymers, and generated two different blend morphologies. Addition of PE‐PEO gave a material with small, well‐dispersed PA‐spheres having good adhesion to the PE matrix, whereas PEAA generated a morphology characterized by small PA‐spheres agglomerated to larger structures. Both compatibilized PE/PA blends had much improved mechanical properties compared with the uncompatibilized blend, with elongation at break b) increasing up to 200%. Addition of compatibilizer to the PE/PA blends stabilized the morphology towards coalescence and significantly reduced the size of the dispersed phase domains, from an average diameter of 20 μm in the unmodified PE/PA blend to approximately 1 μm in the compatibilized blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2416–2424, 2000  相似文献   

5.
Blends of different types of polypropylenes (PP) with polyamide 6 (PA6) were produced by extrusion. The PPs used were a PP homopolymer, a maleic anhydride‐grafted homopolymer, and an acrylic acid‐grafted homopolymer. The blends were characterized by DSC measurements, selective extraction, infrared spectroscopy, REM microscopy, melt rheology, and their mechanical properties. Three types of interactions in the blends as well as in two‐component composites mold by the core‐back process could be identified. Blends of PP with PA6 were not compatible, and two‐component bars could not be produced. Blends of PPgAA and PA6 were made compatible during reactive extrusion. Two‐component bars could be produced only with a blend containing 50 wt % PA6. The composite formation was based on the interdiffusion of PA6 in both components and the reactive compatibilization in the blends. Blends of PPgMAn were also compatibilized during reactive extrusion. The composite formation on two‐component injection molding was based on two mechanisms: the interdiffusion at sites, where PA6 chains of both the components came into contact, and an interfacial reaction, where PPgMAn and PA6 came into contact. The interfacial reaction was supported by the high mobility of the first component at the temperature of the melt of the second component. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2992–2999, 2006  相似文献   

6.
Ultrafine polyamide‐6 (UPA6) with a size of 4–8 μm was prepared via jet‐milling. Blends of poly (vinyl chloride) (PVC) and UPA6 using a reactive copolymer styrene–maleic anhydride (SMA‐18%) were prepared. The change in morphology and structure of the blends were studied using differential scanning calorimetry, scanning electron microscopy, and X‐ray diffraction. The blend behavior was also determined experimentally using dynamic mechanical analysis. Contrasted to the original PA6, the crystallinity of the UPA6 decreased, the size of its crystallites were reduced, and its melting point decreased to 175°C. In all blends, PVC formed the continuous matrix phase. SMA is miscible with PVC and tends to be dissolved in the PVC phase during the earlier stages of blending. The dissolved SMA has the opportunity to react with PA6 at the interface to form the desirable SMA‐g‐PA6 copolymer. This in situ formed SMA‐g‐PA6 graft copolymer tends to anchor along the interface to reduce the interfacial tension and results in finer phase domains. Cocrystallity existed in PVC/(UPA6/SMA) at a ratio of 82/(18/5). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 850–854, 2005  相似文献   

7.
The effect of simultaneous addition of multiwall carbon nanotubes (MWNTs) and a reactive compatibilizer (styrene maleic anhydride copolymer, SMA) during melt‐mixing on the phase morphology of 80/20 (wt/wt) PA6/ABS blend has been investigated. Morphological analysis through scanning and transmission electron microscopic analysis revealed finer morphology of the blends in presence of SMA + MWNTs. Fourier transform infrared spectroscopic analysis indicated the formation of imide bonds during melt‐mixing. Non‐isothermal crystallization studies exhibited the presence of a majority faction of MWNTs in the PA6 phase of 80/20 (wt/wt) PA6/ABS blend in presence of SMA + MWNTs. Rheological analysis, dynamic mechanical thermal analysis, and thermogravimetric analysis have demonstrated the compatibilization action of simultaneous addition of a reactive compatibilizer (SMA copolymer) and MWNTs in PA6/ABS blends. An attempt has been made to investigate the role of simultaneous addition of SMA copolymer and MWNTs on the morphology of 80/20 (wt/wt) PA6/ABS blend through various characterization techniques. POLYM. ENG. SCI., 55:457–465, 2015. © 2014 Society of Plastics Engineers  相似文献   

8.
The surface compositions of a series of poly(phenylene ether)/nylon 6,6 blends (PPE/PA), and PPE/HIPS blends, prepared by melt compounding and injection molding, have been quantitatively measured using XPS. For PPE/PA blends, the surface is dominated by the PA component for blends containing more than 25 wt % PA in the bulk. The enrichment of the PA component, which is actually the component of highest surface free energy, is rationalized in terms of the bulk morphology that consists of PPE domains in a PA continuous phase. Blends prepared by reactive extrusion processes, which form compatibilizing PPE/PA copolymers, show a decrease in surface PA enrichment with increasing copolymer content in the final blend. PPE/HIPS blends have a surface composition equal to the formulated value over the entire composition range, for both molded and solvent cast blends. The addition of 5% PVME to a 60/40 PPE/HIPS blend results in a molded surface containing 35–40 wt % PVME. © 1992 John Wiley & Sons, Inc.  相似文献   

9.
Cationic dyeable poly(trimethylene terephthalate) (CD‐PTT) and metallocene isotactic polypropylene (m‐iPP) polymers were extruded (in proportions of 75/25, 50/50, and 25/75) from two melt twin‐screw extruders to prepare three CD‐PTT/m‐iPP conjugated filaments of the island–sea type. This study investigated the thermal properties and mechanical characteristics of the CD‐PTT/m‐iPP conjugated filaments with gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, potentiometry, rheometry, density gradients, wide‐angle X‐ray diffraction, extension stress–strain measurements, and scanning electron microscopy. The rheological behavior of the CD‐PTT/m‐iPP polyblended polymers exhibited negative‐deviation blends, and the 50/50 CD‐PTT/m‐iPP blend showed a minimum value of the melt viscosity. The experimental results from differential scanning calorimetry indicated that CD‐PTT and m‐iPP molecules formed an immiscible system. The tenacity of the CD‐PTT/m‐iPP conjugated filaments decreased initially and then increased as the m‐iPP content increased. Morphological observations revealed that the blends were in a dispersed phase structure. A pore/filament morphology of a larger size (0.5–3 μm in diameter) was observed after a 1,1,1,3,3,3‐hexafluoro‐2‐propanol (CD‐PTT was removed)/decalin (m‐iPP was removed) treatment in the cross section of a CD‐PTT/m‐iPP conjugated filament. The CD‐PTT and m‐iPP polymers were identified as an immiscible system. Blends with 10 wt % compatibilizer exhibited the maximum improvement in the tenacity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2387–2394, 2007  相似文献   

10.
Blends consisting of high‐impact polystyrene (HIPS) as the matrix and polyamide 1010 (PA1010) as the dispersed phase were prepared by mixing. The grafting copolymers of HIPS and maleic anhydride (MA), the compatibilizer precursors of the blends, were synthesized. The contents of the MA in the grafting copolymers are 4.7 wt % and 1.6 wt %, and were assigned as HAM and LMA, respectively. Different blend morphologies were observed by scanning electron microscopy (SEM); the domain size of the PA1010 dispersed phase in the HIPS matrix of compatibilized blends decreased comparing with that of uncompatibilized blends. For the blend with 25 wt % HIPS‐g‐MA component, the Tc of PA1010 shifts towards lower temperature, from 178 to 83°C. It is found that HIPS‐g‐MA used as the third component has profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to the chemical reaction taking place in situ during the mixing between the two components of PA1010 and HIPS‐g‐MA. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 799–806, 2000  相似文献   

11.
Blends of polystyrene (PS) with polyester polyurethane elastomer (PU‐es) were compatibilized by addition of poly(styrene‐co‐maleic anhydride) (SMA) containing 7 wt % of maleic anhydride. Binary nonreactive (PS/PU‐es) blends, binary reactive (SMA/PU‐es) blends, and ternary reactive blends (PS/SMA/PU‐es) were prepared with 10 and 20 wt % of PU‐es. The maleic anhydride content in the ternary reactive blends was varied through addition of different SMA amounts from 0.5 to 5 wt %. Polyurethane in the blends was crosslinked by using dicumyl peroxide or sulfur to improve its mechanical properties. The experimental processing conditions, such as temperature and rotor speed in an internal mixer, were analyzed before blend preparation by processing the individual polymers, PS and SMA, and the PS/PU‐es nonreactive blend (90/10), to prevent the degradation of the polymer during melt mixing and to assure macroscopic homogeneity. The torque behavior during the mixture indicated a grafting copolymerization, which was responsible for the significant drop of the PU‐es domain size in the glassy matrix, as observed by scanning electronic microscopy (SEM). The miscibility of the glassy matrix, which was shown to be dependent on the composition and the phase behavior of ternary blends, became very complex as the SMA concentration increased, as concluded from dynamical–mechanical analysis. Blends containing 20 wt % of PU‐es presented an increase up to a factor of 2 in the deflection at break in relation to PS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2297–2304, 2004  相似文献   

12.
This paper reports about the polymerization of ε‐caprolactam monomer in the presence of low molecular weight hydroxyl or isocyanate end‐capped ethylene‐butylene elastomer (EB) elastomers as a new concept for the development of a submicron phase morphology in polyamide 6 (PA6)/EB blends. The phase morphology, viscoelastic behavior, and impact strength of the polymerization‐designed blends are compared to those of similar blends prepared via melt‐extrusion of PA6 homopolymer and EB elastomer. Polyamide 6 and EB elastomer were compatibilized using a premade triblock copolymer PA6‐b‐EB‐b‐PA6 or a pure EB‐b‐PA6 diblock reactively generated during melt‐blending (extrusion‐prepared blends) or built‐up via anionic polymerization of ε‐caprolactam on initiating ? NCO groups attached to EB chain ends (polymerization‐prepared blends). Two compatibilization approaches were considered for the polymerization‐prepared blends: (i) the addition of a premade PA6‐b‐EB‐b‐PA6 triblock copolymer to the ε‐caprolactam monomer containing nonreactive EB? OH elastomer and (ii) generation in situ of a PA6‐b‐EB diblock using EB? NCO precursor on which polyamide 6 blocks are built‐up via anionic polymerization of ε‐caprolactam. The noncompatibilized blends exhibit a coarse phase morphology, either in the extruded or the polymerization prepared blends. Addition of premade triblock copolymer (PA6‐b‐EB‐b‐PA6) to a EB? OH /ε‐caprolactam dispersion led to a fine EB phase (0.14 μm) in the PA6 matrix after ε‐caprolactam polymerization. The average particle size of the in situ reactively compatibilized polymerization‐prepared blend is about 1 μm. The notched Izod impact strength of the blend compatibilized with premade triblock copolymer was much higher than that of the neat PA6, the noncompatibilized, and the in situ reactively compatibilized polymerization blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2538–2544, 2004  相似文献   

13.
This work examines the thermal properties and phase morphology of melt‐mixed poly(trimethylene terephthalate) (PTT)/poly(hexamethylene isophthalamide) (PA 6I) blends. Two temperatures, i.e., 250 and 260°C, are used to prepare the blends, respectively. Differential scanning calorimetry results indicate the immiscible feature of the blends. It is thus concluded that the ester‐amide interchange reaction hardly occurred in the PTT/PA 6I blends. Depending on the composition and mixing temperature, the crystallization ability of PTT in the blends is either enhanced or hindered. Basically, a lower PA 6I content shifts the PTT melt crystallization to a higher temperature, whereas a higher PA 6I content causes an opposing outcome. The original complex melting behavior of neat PTT becomes more regular after the incorporation of 60 wt % or 80 wt % of PA 6I. Thermogravimetry analyses (TGA) show that the thermal stability of the blends improves as the PA 6I content increases. The two‐phased morphology of the blends is examined by scanning electron microscopy (SEM). Polarized light microscopy (PLM) results reveal that the PTT spherulites become coarser with the inclusion of PA 6I; only smaller/dispersed crystallites are observed in the blend with 20 wt % of PTT. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Polyamide6 (PA6)/acrylonitrile butadiene styrene copolymer (ABS) blends with unmodified multiwall carbon nanotubes (MWNTs) were prepared via melt‐blending in a conical twin‐screw micro‐compounder with varying melt‐mixing time. To improve the state of dispersion of MWNTs, non‐covalent organic modifiers for MWNTs have been utilized: sodium salt of 6‐amino hexanoic acid (Na‐AHA) and 1‐pyrene‐carboxaldehyde (PyCHO). PA6/ABS blends with MWNTs have shown a phase morphology transition from ‘matrix‐dispersed droplet’ type to ‘co‐continuous’ type as a function of melt‐mixing time with the exception of 40/60 PA6/ABS blend with PyCHO‐modified MWNTs. Non‐isothermal crystallization studies revealed the heterogeneous nucleating action of MWNTs through the presence of double crystallization exothermic peaks (at ~192°C and >200°C) while pure PA6 shows bulk crystallization peak at ~192°C. 40/60 and 60/40 (wt/wt) PA6/ABS blends with 5 wt% unmodified MWNTs exhibited electrical conductivity values of ~3.9 × 10?11 S/cm and ~4.36 × 10?6 S/cm, respectively. A significant enhancement in electrical conductivity was observed with Na‐AHA and PyCHO‐modified MWNTs (order of ~10?6 and ~10?4 S/cm, respectively). POLYM. ENG. SCI., 55:429–442, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Within a IUPAC study, melt processing, mechanical, and fatigue crack growth properties of blends of polyamide 6 (PA 6) and poly(acrylonitrile–butadiene–styrene) (ABS) were investigated. We focused on the influence of reactive compatibilization on blend properties using a styrene–acrylonitrile–maleic anhydride random terpolymer (SANMA). Two series of PA 6/ABS blends with 30 wt % PA 6 and 70 wt % PA 6, respectively, were prepared with varying amounts of SANMA. Our experiments revealed that the morphology of the matrix (PA 6 or ABS) strongly affects the blend properties. The viscosity of PA 6/ABS blends monotonically increases with SANMA concentration because of the formation of high‐molecular weight graft copolymers. The extrudate swell of the blends was much larger than that of neat PA 6 and ABS and decreased with increasing SANMA concentrations at a constant extrusion pressure. This observation can be explained by the effect of the capillary number. The fracture resistance of these blends, including specific work to break and impact strength, is lower than that of PA 6 or ABS alone, but increases with SANMA concentration. This effect is most strongly pronounced for blends with 70 wt % PA 6. Fatigue crack growth experiments showed that the addition of 1–2 wt % SANMA enhances the resistance against crack propagation for ABS‐based blends. The correlation between blend composition, morphology and processing/end‐use properties of reactively compatibilized PA 6/ABS blends is discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
The hyperbranched (HB) aromatic polyamide synthesised by direct polycondensation of 5‐(4‐aminobenzoylamino)isophthalic acid (ABZAIA) has been solution‐ and melt‐ blended with polyamide 6 (PA6) incorporating different end groups. The concentration of p(ABZAIA) in PA6 has been varied from 5 to 30 wt.‐% in order to evaluate the influence of hyperbranched polymer content on blend properties. Viscosity and glass transition (Tg) data of the solution blends underlined the full miscibility between the components in the explored composition range. The miscibility was not related to any specific type of PA6 end group, thus suggesting a major role for its amide groups in interacting (presumably via hydrogen bonding) with HB functional end groups. Well‐separated powder particles have been obtained by precipitation from diluted solutions both for the neat polymers and for the blends. Also, in the case of blends prepared by melt mixing Tg linearly increased with the HB polymer content, again confirming full miscibility between the blend components. Blend characterisation, solubility tests and melt rheology supported the idea that p(ABZAIA) forms reactive blends with polyamide 6 by melt mixing. As a consequence of these reactions, the hyperbranched aramid strongly modified the rheological behaviour of PA6.

Formation of well dispersed spherical and homogeneous particles after precipitation of a PA6 dilute solution.  相似文献   


17.
This work is aimed at determining the effect of nanoclay and polyepichlorohydrin‐co‐ethylene oxide (ECO) content on the microstructure and mechanical properties of PA6/ECO thermoplastic elastomers (TPEs). TPE nanocomposites were prepared in a laboratory mixer using polyamide 6 (PA6), ECO, and an organoclay by a two‐step melt mixing process. First, the PA6 was melt blended with Cloisite 30B and then mixed by ECO rubber. X‐ray diffraction results and transmission electron microscopy image showed that the nanoclay platelets were nearly exfoliated in both the phases. The SEM photomicrograph of PA6 with ECO showed that the elastomer particles are dispersed throughout the polyamide matrix and the size of rubber particles is less than 3 μm. Introduction of organoclay in the PA6 matrix increased the size of dispersed rubber particles in comparison with the unfilled but otherwise similar blends. The nanoscale dimension of the dispersed clay results in an improvement of the tensile modulus of the nanocomposites. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

18.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Blends of polyamide 6 (PA6) and elastomeric ethylene‐octene copolymer (EOR), with and without maleated EOR (EOR‐MA) were studied. EOR‐MA with various amounts of grafted MA and gel content were prepared by reactive extrusion. The effects of EOR‐MA characteristics and composition on the morphology, thermal and mechanical properties of the blends were investigated. EOR‐MA was found to promote the toughness efficiency of PA6 remarkably. High impact resistance was achieved by the use of EOR‐MA containing less than 2% gel. The content of MA grafted on EOR‐MA in the range of 0.5%–1.0% gave a similar effect on the blend properties. The blend containing 20% of EOR grafted with 1% MA exhibited twenty times higher impact strength (1000 J/m) than pure PA6 (55 J/m). The presence of EOR‐MA in the blends led not only to a drastic reduction in the dispersed particle size, but also to some changes in fracture mechanisms, thus enhancing the impact resistance of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号