首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustainable energy consumption is an important part of the renewable energy economy as renewable energy generation and storage. Almost one‐third of the global energy consumption can be credited to the transportation of goods and people around the globe. To move towards a renewable energy–based economy, we must adopt to a more sustainable energy consumption pattern worldwide especially in the transportation sector. In this article, a comparison is being made between the energy efficiency of a fuel cell vehicle and a battery electric vehicle. A very simple yet logical approach has been followed to determine the overall energy required by each vehicle. Other factors that hinder the progress of fuel cell vehicle in market are also discussed. Additionally, the prospects of a hydrogen economy are also discussed in detail. The arguments raised in this article are based on physics, economic analyses, and laws of thermodynamics. It clearly shows that an “electric economy” makes far greater sense than a “hydrogen economy.” The main objective of this analysis is to determine the energy efficacy of battery‐powered vehicles as compared to fuel cell–powered vehicles.  相似文献   

2.
The standalone hybrid power system constitutes a synchronous generator driven by a diesel engine, renewable energy source (wind) apart from a battery energy storage system. A coherent control strategy to regulate the voltage and frequency of the standalone grid is proposed in this paper. The system is simulated using Matlab/Simulink for preliminary validation and further tested on a laboratory prototype which involves a TMS320LF2407A DSP controller to digitally implement the control strategy. The dynamic behavior of the system is perused through the direct connection of an induction machine. The control strategy is verified for step changes in load and variation in wind power.  相似文献   

3.
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage.  相似文献   

4.
An extended-power pinch analysis (EPoPA) is proposed as a means of extending the power pinch analysis (PoPA) for optimal design of renewable energy systems with battery and hydrogen storage (RES-BH). The EPoPA concept is based on the storage of wasted electricity that cannot be stored by the battery bank designed by PoPA. This energy is stored in the form of hydrogen and is discharged in the form of electricity when the external electricity source is needed. EPoPA graphical and numerical tools are introduced to determine the minimum required external electricity source, wasted electricity sources, and appropriate hydrogen storage system capacity of the RES-BH system during first and normal operation years. Furthermore, the integration of the RES-BH system with a diesel generator as a high reliable system is investigated in view point of economic. The optimal sizes of diesel generator and hydrogen storage system components, such as electrolyzer, fuel cell and hydrogen tank are obtained with the minimization of the total annual cost (TAC) of the system. The implementation results of the EPoPA tools on three possible case studies indicate that EPoPA, unlike other process integration methodologies such as PoPA, is able to optimally design RES-BH systems.  相似文献   

5.
The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ The commercial development and current economic incentives associated with energy storage using redox flow batteries (RFBs) are summarised. The analysis is focused on the all‐vanadium system, which is the most studied and widely commercialised RFB. The recent expiry of key patents relating to the electrochemistry of this battery has contributed to significant levels of commercialisation in, for example, Austria, China and Thailand, as well as pilot‐scale developments in many countries. The potential benefits of increasing battery‐based energy storage for electricity grid load levelling and MW‐scale wind/solar photovoltaic‐based power generation are now being realised at an increasing level. Commercial systems are being applied to distributed systems utilising kW‐scale renewable energy flows. Factors limiting the uptake of all‐vanadium (and other) redox flow batteries include a comparatively high overall internal costs of $217 kW?1 h?1 and the high cost of stored electricity of ≈ $0.10 kW?1 h?1. There is also a low‐level utility scale acceptance of energy storage solutions and a general lack of battery‐specific policy‐led incentives, even though the environmental impact of RFBs coupled to renewable energy sources is favourable, especially in comparison to natural gas‐ and diesel‐fuelled spinning reserves. Together with the technological and policy aspects associated with flow batteries, recent attempts to model redox flow batteries are considered. The issues that have been addressed using modelling together with the current and future requirements of modelling are outlined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Sustainable development of renewable energy sources is one of the most important themes that humanity faces in this century. Wide use of renewable energy sources will require a drastically increased ability to store electrical energy. Electrochemical energy storage devices are expected to play a key role. With the increased demand in flexible energy resource for wearable electronic devices, great efforts have been devoted to developing high‐quality flexible electrodes for advanced energy storage and conversion systems. Because of its high specific surface area, good chemical stability, high mechanical flexibility, and outstanding electrical properties, graphene, a special allotrope of carbon with two‐dimensional mono‐layered network of sp2 hybridized carbon, have been showing great potential in next‐generation energy conversion and storage devices. This review presents the latest advances on the flexible graphene‐based materials for the most vigorous electrochemical energy storage devices, that is, supercapacitors and lithium‐ion batteries. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Integration of wind machines and battery storage with the diesel plants is pursued widely to reduce dependence on fossil fuels. The aim of this study is to assess the impact of battery storage on the economics of hybrid wind‐diesel power systems in commercial applications by analyzing wind‐speed data of Dhahran, East‐Coast, Kingdom of Saudi Arabia (K.S.A.). The annual load of a typical commercial building is 620,000 kWh. The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100‐kW commercial wind machines (CWMs) supplemented with battery storage and diesel generators. National Renewable Energy Laboratory's (NREL's) (HOMER Energy's) Hybrid Optimization Model for Electric Renewables (HOMER) software has been employed to perform the economic analysis. The simulation results indicate that for a hybrid system comprising of 100‐kW wind capacity together with 175‐kW diesel system and a battery storage of 4 h of autonomy (i.e. 4 h of average load), the wind penetration (at 37‐m hub height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind–battery–diesel system has been found to be 0.139 $/kWh (assuming diesel fuel price of 0.1$/L). The investigation examines the effect of wind/battery penetration on: COE, operational hours of diesel gensets. Emphasis has also been placed on un‐met load, excess electricity, fuel savings and reduction in carbon emissions (for wind–diesel without battery storage, wind–diesel with storage, as compared to diesel‐only situation), cost of wind–battery–diesel systems, COE of different hybrid systems, etc. The study addresses benefits of incorporation of short‐term battery storage (in wind–diesel systems) in terms of fuel savings, diesel operation time, carbon emissions, and excess energy. The percentage fuel savings by using above hybrid system is 27% as compared to diesel‐only situation Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Battery charging techniques are critical to enhance battery operation performance. Charging temperature rise, energy loss, and charging time are three key indicators to evaluate charging performance. It is imperative to decrease temperature rise and energy loss without extending the charging time during the charging process. To this end, an equivalent circuit electrical model, a power loss model, and a thermal model are built in this study for lithium‐ion batteries. Then, an integrated objective function is formulated to minimize energy loss and temperature increment during battery charging. To further validate the generality and feasibility of the proposed charging strategy, experiments are conducted with respect to different current, operating temperatures, battery types, and aging status. Comparison results demonstrate that the devised charging strategy is capable of achieving the intended effect under any operating temperature and with different aging status.  相似文献   

9.
Superconducting magnetic energy storage (SMES) is known to be an excellent high‐efficient energy storage device. This article is focussed on various potential applications of the SMES technology in electrical power and energy systems. SMES device founds various applications, such as in microgrids, plug‐in hybrid electrical vehicles, renewable energy sources that include wind energy and photovoltaic systems, low‐voltage direct current power system, medium‐voltage direct current and alternating current power systems, fuel cell technologies and battery energy storage systems. An extensive bibliography is presented on these applications of SMES. Also, some conclusive remarks in terms of future perspective are presented. Also, the present ongoing developments and constructions are also discussed. This study provides a basic guideline to investigate further technological development and new applications of SMES, and thus benefits the readers, researchers, engineers and academicians who deal with the research works in the area of SMES. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
Autonomous wind power systems are among the most interesting and environmentally friendly technological solutions for the electrification of remote consumers. In many cases, however, the battery contribution to the initial or the total operational cost is found to be dominant, discouraging further penetration of the available wind resource. This is basically the case for areas possessing a medium–low wind potential. On the other hand, several isolated consumers are located in regions having the regular benefit of an abundant and reliable solar energy supply. In this context the present study investigates the possibility of reducing the battery size of a stand‐alone wind power installation by incorporating a small photovoltaic generator. For this purpose an integrated energy production installation based exclusively on renewable energy resources is hereby proposed. Subsequently a new numerical algorithm is developed that is able to estimate the appropriate dimensions of a similar system. According to the results obtained by long‐term experimental measurements, the introduction of the photovoltaic panels considerably improves the operational and financial behaviour of the complete installation owing to the imposed significant battery capacity diminution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Electric energy storage systems are used considerably in industries and daily applications. The demand for batteries with high energy content has increased because of their use in hybrid vehicles. Lead–acid batteries have wide applications because of their advantages such as high safety factor and low cost of production. The major shortcoming of lead–acid batteries is low energy content and high dimension and weight. Nowadays, a common method to increase the energy content of lead–acid battery is the experimental method with trial and error, which is time consuming and expensive. In this paper, non‐isothermal one‐dimensional numerical simulation of lead–acid battery with finite volume method is performed. In addition, a cell with higher energy content and lower thickness is designed by using particle swarm optimization algorithm based on developed simulation code. The results of single objective optimization show that an optimal battery that has 27.6% higher energy can be made with the same cell dimension. The results also show that an optimum cell battery can be obtained with a decrease of 24% in thickness while keeping the energy the same. Moreover, a multi‐objective optimization algorithm is utilized to find Pareto optimal solutions while considering the energy content and thickness objectives simultaneously. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The optimal design of a hybrid system with different configurations including renewable generation is presented in this paper. A novel multi‐objective function consisting of 6 different objectives of hybrid system is reported using GA, PSO, and TLBO to decide the optimal configurations of parameters. The technical (loss of power supply probability, renewable factor), economical (cost of energy, penalty and fuel consumption), and social (job creation, human development index, and particular matter) features are investigated as objectives simultaneously for optimal design of hybrid system. The different objective indices namely cost of energy, loss of power supply probability, particular matter, human development index, job creation, and renewable factor indices are considered. The newly invented particular matter factor for design consideration of hybrid system directly shows the human health impacts, while pollutant emission is measured in the hybrid system design. The optimum values of objective indices are decided on the basis of the minimum value of multi‐objective function. The distinct cases from I to VI of hybrid system are examined for optimal configuration including different combinations of PV, wind, biomass, diesel generator, and battery bank. The resulting analysis of each case reveals that the performance of TLBO is better than PSO, and PSO is better than GA in all respect through new multi‐objective function and found case I is more efficient solution.  相似文献   

13.
We describe an advanced lithium‐ion battery model for system‐level analyses such as electric vehicle fleet simulation or distributed energy storage applications. The model combines an empirical multi‐parameter model and an artificial neural network with particular emphasis on thermal effects such as battery internal heating. The model is fast and can accurately describe constant current charging and discharging of a battery cell at a variety of ambient temperatures. Comparison to a commonly used linear kilowatt‐hour counter battery model indicates that a linear model overestimates the usable capacity of a battery at low temperatures. We highlight the importance of including internal heating in a battery model at low temperatures, as more capacity is available when internal heating is taken into account. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrogen as a storage medium in renewable energy systems has been the subject of various studies in recent years. Such a system consists of a long-term and a short-term storage system. In a battery, energy is stored for short term whereas the electrolyser, H2-tank and fuel cell combination is used for long-term energy storage to increase the reliability of supply. The same purpose can be achieved by introducing a diesel generator instead of long-term storage. The advantage of such a system is that it needs low investment cost. However, the main disadvantage is that it needs to supply fuel for the operation of the generator. The advantage of hydrogen-based long-term storage over a diesel generator is that it does not need any supply of fuel. In photovoltaic–wind–diesel hybrid systems, the surplus energy during the good season is not stored.In the present study, the possible sites for renewable applications are specified depending on the seasonal renewable energy variation and fuel cost at the site of application. The critical fuel cost is calculated depending on the seasonal solar and wind energy difference. The actual fuel cost at the site of application is compared with critical fuel cost. To find out the actual fuel cost at the location of application, the transportation cost is also included. If the actual fuel cost is higher than the critical fuel cost, the location is cost-effective for hydrogen-based storage. Otherwise, the site is suitable for a diesel-generator backup system. It is found that at present hydrogen storage is not cost-effective compare to a diesel-generator-based system. In the near future when the target cost of the electrolyser and the fuel cell is achieved, the scope of the hydrogen-based storage system will also increase and it will also be cost competitive with diesel-generator system for remote applications.  相似文献   

15.
The industrial sector is one of the major energy consumers that contribute to global climate change. Demand response programs and on‐site renewable energy provide great opportunities for the industrial sector to both go green and lower production costs. In this paper, a 2‐stage stochastic flow shop scheduling problem is proposed to minimize the total electricity purchase cost. The energy demand of the designed manufacturing system is met by on‐site renewables, energy storage, as well as the supply from the power grid. The volatile price, such as day‐ahead and real‐time pricing, applies to the portion supplied by the power grid. The first stage of the formulated model determines optimal job schedules and minimizes day‐ahead purchase commitment cost that considers forecasted renewable generation. The volatility of the real‐time electricity price and the variability of renewable generation are considered in the second stage of the model to compensate for errors of the forecasted renewable supply; the model will also minimize the total cost of real‐time electricity supplied by the real‐time pricing market and maximize the total profit of renewable fed into the grid. Case study results show that cost savings because of on‐site renewables are significant. Seasonal cost saving differences are also observed. The cost saving in summer is higher than that in winter with solar and wind supply in the system. Although the battery system also contributes to the cost saving, its effect is not as significant as the renewables.  相似文献   

16.
Algeria is in a region with an enormous potential of solar energy for power generation. However, photovoltaic (PV) power plants have not yet been developed sufficiently in the country, and its applications such as PV pumping, solar distillation, and solar heating. The main problem is the high maintenance, operating costs, fossil‐fuel transportation, and CO2 emission of Bordj Badji Mokhtar's (BBM's) diesel power plant that exhibits a noteworthy issue in south Algeria. This paper presents the results of a theoretical and experimental study for PV/diesel hybrid energy system (HES) considering the load demand profile and the solar radiation in isolated area of south Algeria. Suggested hybridization based on a renewable energy with a view to an improved environment is promising. Study results show the performance of PV/diesel system based on solar radiation. The experiment load curve in this typical area may conduct the diesel generator to operate at 60% to 70% of its nominal power with less fuel consumption, and it has been verified during this study that the implementation of a PV/diesel hybrid system is efficient for higher load and higher solar radiation. Results and discussions are encouraging considering less emission of greenhouse gases and less storage of fuel, which drives the government to draw a political arrangement for the improvement of cleaner forms of electricity generation.  相似文献   

17.
Battery integrated diesel generation is one of the options for decentralized power production. They are particularly suitable for loads with significant variation in the daily demand. A methodology for the optimum sizing of integrated system involving diesel generator and battery bank for an isolated electrical power generation is proposed in this paper. The proposed methodology is based on the design-space approach involving a time series simulation of the entire system. Based on the proposed approach, for a given load demand, characteristics of the diesel generator and battery bank, a sizing curve is identified on the diesel generator rating vs. storage capacity diagram. The sizing curve helps in identifying all possible feasible system configurations or the design space. Based on the minimum capital cost and the minimum operating cost of the system, the Pareto optimum curve is identified on the system-sizing curve. Optimum system configuration is identified based on the minimum cost of energy through optimal dispatch strategy. Two operating strategies, involving continuous and intermittent operation of the diesel generator are studied and compared. Effect of the load profile on the system sizing is also presented in this paper.  相似文献   

18.
随着可再生能源发电技术的发展,能够整合分布式发电系统的微网成为满足日益增长的电力需求、节省投资和提高能源利用率的一种有效途径。储能系统作为微网必要的能量缓冲环节,其作用越来越重要。文章概述了电池储能系统的基本特性,分析了电池储能系统的运行及控制原理,并详细阐述了其在微网中的作用。基于蓄电池的储能系统,不仅能起到能量缓冲的作用,还能提供短时供电、缓冲微网中负荷波动、改善微网电能质量,对提高微网的经济效益具有重要作用。  相似文献   

19.
A modular system for the supply of remote electrical consumers was developed, which makes possible a variable integration of wind energy and photovoltaic plants in connection with a diesel engine and a battery storage. The wind energy converters, equipped with asynchronous generators, and a fast pitch control, work parallel with a synchronous generator. The generator is driven by a diesel engine by means of an overrunning clutch, or started by a small DC-motor. If the diesel is off, or the starting process by the DC-motor is finished, the synchronous generator works as a rotating phase-shifter and takes over voltage control and supply of reactive power.

The speed versus power control of the wind energy converters does not only make possible an optimized parallel operation with the diesel-generator unit, but also directly takes over frequency control when operated singly without diesel engine. The location of the wind energy plants does not depend on the site of the diesel engine, because control cables are not necessary. To avoid too frequent starting of the diesel, a storage battery is installed. The report describes the electrical and control technical design on principle, as well as the experience with the following, already built plants:

-Coupling of two wind energy plants for the supply of water irrigation pumps.

-Combination of two WECs with a short-time battery storage and a diesel-set.

-Combination of two WECs with a photovoltaic generator and a battery storage.  相似文献   

20.
Hybrid diesel–PV–battery systems are one of the most cost effective options for off-grid power generation. A methodology for the optimal operation of such systems for an off-grid application is proposed in this paper. The methodology is based on the minimisation of an energy cost function. Based on this function, an optimal operating point for the diesel generator is identified, taking into account the characteristics of the diesel generator, battery bank and converter as well as the costs of fuel and battery usage. The operation of the diesel generator at this optimum operating point results in an overall energy cost reduction for the hybrid diesel–battery system. Simulation analysis shows that the proposed control strategy can achieve up to 4% reduction in the levelised cost of energy. This is mostly due to the savings made from the efficient usage of diesel generator and battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号