首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodegradation of direct yellow-12 using UV/H2O2/Fe2+   总被引:6,自引:0,他引:6  
A detailed investigation of photodegradation of direct yellow-12 (DY12) using UV/H(2)O(2)/Fe(2+) has been carried out in a photochemical reactor. Experiments studied degradation as a function of concentration, decolorization and reduction in chemical oxygen demand (COD). The effect of operating parameters, such as UV, pH, amount of Fenton's reagent (H(2)O(2) and FeSO(4)), and amount of DY12 dye has also been determined. It has been observed that simultaneous utilization of UV irradiation with Fenton's reagent increases the degradation rate of DY12 dye. The dye quickly losses its color and there is an appreciable decrease in COD value, indicating that the dissolved organic have been oxidized. The kinetics of degradation of the dye in dilute aqueous solutions follows pseudo-first order kinetics. Final products detected at the end of the reaction include NO(3)(-), NO(2)(-), N(2)O, NO(2), SO(2), CO(2) and CO. Results indicate that dye degradation is dependent upon pH, UV-intensity, concentration of Fenton's reagent and dye. Acidic pH has been found to be more suitable in comparison to neutral and alkaline. The optimum concentration of Fenton's reagent (H(2)O(2)/Fe(2+)) was found as 1500/500 mg l(-1) for 50 mg l(-1) DY12 dye in water at pH 4. The results indicate that the treatment of DY12 dye wastewater with UV/Fe(2+)/H(2)O(2) system is efficient.  相似文献   

2.
The photodegradation of three commercially available dyestuffs (C.I. Reactive Black 5, C.I. RB5, C.I. Direct Yellow 12, C.I. DY12, and C.I. Direct Red 28, C.I. DR28) by UV, UV/H(2)O(2) and UV/H(2)O(2)/Fe(II) processes was investigated in a laboratory-scale batch photoreactor equipped with an 16W immersed-type low-pressure mercury vapour lamp. The experimental results were assessed in terms of absorbance and total organic carbon (TOC) reduction. The initial concentration was kept constant at 100 mg l(-1) for all dyes. Initial results showed that, color removal efficiencies by UV or H(2)O(2) alone were negligible for all dyes. Almost complete disappearance of C.I. RB5 (99%) and DY12 (98%) in UV/H(2)O(2) process was possible to achieve after 60 min of irradiation. The maximum color removal efficiency of C.I. DR28 after 60 min of irradiation, however, was only 40% and reached a maximum value of 70% after 120 min of irradiation. Corresponding mineralization efficiencies were 50, 55 and 7-12%, respectively. The addition of Fe(II) to the system, so-called the photo-Fenton process, greatly enhanced the color removal, the efficiencies being 98, 88 and 85% for C.I. RB5, C.I. DY12 and C.I. DR28 only after 5 min of irradiation. Corresponding mineralization efficiencies were 98% for 45 min irradiation, 100% for 60 min irradiation and 98% for 90 min irradiation, respectively. However, marginal benefit was less significant in the higher range of both H(2)O(2) and Fe(II). Furthermore, decreases in both decolorization and mineralization were observed at higher concentrations of oxidant and catalyst due to the scavenging effect of excess H(2)O(2) and OH radicals. The degradation of all dyes was found to follow first-order reaction kinetics.  相似文献   

3.
The decolorization of C.I. Acid Red 27 (AR27), a monoazo anionic dye, was studied in the ultraviolet radiation (UV) alone and UV plus hydrogen peroxide (UV/H(2)O(2)) processes. The experimental results indicated that the kinetics of both oxidation processes fit well by pseudo-first order kinetics. The reaction rate was sensitive to the operational parameters and increased with increasing H(2)O(2) concentration and light intensity. The reaction orders of H(2)O(2) concentration and light intensity in both processes were obtained with linear regression method. A regression model was developed for pseudo-first order rate constant (k(ap,UV/H(2)O(2))) as a function of the Cconcentration and UV light intensity. (k(ap,UV/H(2)O(2)))=(2 x 10(-4)I(0.75)(0) + k(3)I(1.38)(0)[H(2)O(2)](n)(0))phi(AR27). As a result of two opposing effects of H(2)O(2) concentration at low and high concentrations, n has a value of 0.49 and -0.39 and k(3) has a value of 3 x 10(-4) and 0.1 for the regions of 0 mg l(-1) < [H(2)O(2)](0) < 650 mg l(-1) and 650 mg l(-1) < [H(2)O(2)](0) < 1500 mg l(-1)1, respectively. PhiAR27 is the initial dye concentration correlation index for developing of model for different initial concentrations of AR27. This rate expression can be used for predicting k(ap,UV/H(2)O(2) at different conditions in UV alone and UV/H2O2 processes. The results show that UV alone cannot be an efficient method for decolorization of AR27 in comparison with UV/H(2)O(2) process, therefore the first term of the model can be neglected.  相似文献   

4.
Decolorization and mineralization of bakery's yeast industry effluent by photochemical advanced oxidation processes (AOPs) utilizing UV with hydrogen peroxide and Photo-Fenton, were investigated in a laboratory scale photo-reactor equipped with a 16 W low-pressure mercury vapor lamp. The Box-Wilson experimental design method was employed to evaluate the effects of major process variables (e.g. pH, oxidant dose, and irradiation time) on the decolorization efficiency. Response function coefficients were determined by regression analysis of the experimental data and prediction results agreed with the experimental results. The optimum hydrogen peroxide concentration and irradiation time were found to be 5 mM and 50 min at pH 3, respectively, for UV/H2O2 process. In the Photo-Fenton process application, maximum decolorization efficiency (96.4%) was obtained at the optimum reaction conditions that were 100 mM H2O2 and 1 mM Fe(II) doses at pH 3, and 10 min of irradiation time.  相似文献   

5.
This study investigated the decolorization efficiency of C.I. Reactive Red 2 (RR2) in O3, O3/H2O2, O3/Fe3+, O3/H2O2/Fe3+, UV/O3, UV/O3/Fe3+, UV/O3/H2O2 and UV/O3/H2O2/Fe3+ systems at various pHs. The effective energy consumption constants and the electrical energy per order of pollutant removal (EE/O) were also determined. The experimental results indicated that the energy efficiency was highest at [H2O2]0=1000mg/l and [Fe3+]0=25mg/l. Accordingly, the H2O2 and Fe3+ doses in the hybrid ozone- and UV/ozone-based systems were controlled at these values. This work suggests that the dominant reactant in O3, O3/Fe3+ and O3/H2O2 systems was O3 and that in the O3/H2O2/Fe3+ system was H2O2/Fe3+. The experimental results revealed that the combinations of Fe3+ or H2O2/Fe3+ with O3 at pH 4 and of H2O2 or H2O2/Fe3+ with UV/O3 at pH 4 or 7 yielded a higher decolorization rate than O3 and UV/O3, respectively. At pH 4, the EE/O results demonstrated that the UV/O3/H2O2/Fe3+ system reduced 85% of the energy consumption compared with the UV/O3 system. Moreover, the O3/H2O2/Fe3+ system reduced 62% of the energy consumption compared with the O3 system. At pH 7, the EE/O results revealed that the UV/O3/H2O2/Fe3+ system consumed half the energy of the UV/O3 system.  相似文献   

6.
Kinetics and degradation products resulting from the application of UV and UV/H(2)O(2) to the US EPA Contaminant Candidate List pesticide diazinon were studied. Batch experiments were conducted with both monochromatic (low pressure [LP] UV 253.7 nm) and polychromatic (medium pressure [MP] UV 200-300 nm) UV sources alone or in the presence of up to 50 mg l(-1) H(2)O(2), in a quasi-collimated beam apparatus. Degradation of diazinon by both UV and UV/H(2)O(2) exhibited pseudo first order reaction kinetics, and quantum yield of 8.6 x 10(-2) and 5.8 x 10(-2) mol E(-1) for LP and MP lamps respectively. Photolysis studies under MP UV lamp showed 2-isopropyl-6-methyl-pyrimidin-4-ol (IMP) to be the main degradation product of diazinon at aqueous solution pH values of 4, 7 and 10. Trace levels up to 1.8 x 10(-3) microM of diazinon oxygen analogue diethyl 2-isopropyl-6-methylpyrimidin-4-yl phosphate (diazoxon) were detected only during the UV/H(2)O(2) reaction. Decay of both products was observed, as the UV/H(2)O(2) reaction prolonged, yet no mineralization was achieved over the UV fluence levels examined. Photolysis kinetics, quantum yield and UV/H(2)O(2) degradation of the reaction product IMP was determined using MP UV lamp at pH values of 4, 7 and 10.  相似文献   

7.
An advanced oxidation process, UV/H2O2, was applied for decolorization of a di-azo dye (acid black 1). The effects of operating parameters such as hydrogen peroxide dosage, UV dosage and initial dye concentration, on decolorization have been evaluated. The acid black 1 solution was completely decolorized under optimal hydrogen peroxide dosage of 21.24 mmol/l and UV dosage of 1400 W/l in less than 1.2 min. The decolorization rate followed pseudo-first order kinetics with respect to the dye concentration. The rate increased linearly with volumetric UV dosage and nonlinearly with increasing initial hydrogen peroxide concentration. It has been found that the degradation rate increased until an optimum of hydrogen peroxide dosage, beyond which the reagent exerted an inhibitory effect. For real case application, an operation parameter plot of rate constant was developed. To evaluate the electric power and hydrogen peroxide consumption by UV/H2O2 reactor, 90% color removal was set as criteria to find the balance between both factors.  相似文献   

8.
The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H(2)O(2) and Fe(3+) and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl(-), CO(3)(2-) or HCO(3)(-) on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe(3+) and H(2)O(2) at molar ratios of H(2)O(2)/Fe(3+) from about 100 to 10. The addition of CO(3)(2-) and HCO(3)(-) substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl(-). At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.  相似文献   

9.
Rose Bengal (C.I. name is Acid Red 94) was irradiated with UV light in the presence of hydrogen peroxide. The photoinduced decolorization of the dye was monitored spectrophotometrically. The apparent rate of decolorization was calculated from the observed absorption data and was found to be pseudo first order. A systematic study of the effect of dye concentration and H(2)O(2) concentration on the kinetics of dye decolorization was also carried out. Dye decolorization increased with increasing H(2)O(2) concentration and decreasing dye concentration. The maximum dye decolorization was determined as 90% with 0.005 mM dye at optimum 0.042 M H(2)O(2) and pH 6.6. Additionally, the effect on decolorization of this dye in the presence of some additives (ions) was also investigated. It was seen that sulphite caused a maximum effect on % decolorization of the dye solution. A plausible explanation involving the probable radical initiated mechanism was given to explain the dye decolorization. The experimental data was also optimized using the response surface methodology (RSM). According to ANOVA results, the proposed model can be used to navigate the design space. It was found that the response of Rose Bengal degradation is very sensitive to the independent factors of dye concentration, H(2)O(2) concentration, pH and reaction time. The proposed model for D-optimal design fitted very well with the experimental data with R(2) and R(adj)(2) correlation coefficients of 0.85 and 0.80, respectively.  相似文献   

10.
The zero-valent iron (ZVI) reduction succeeds for decolorization, while UV/H(2)O(2) oxidation process results into mineralization, so that this study proposed an integrated technique by reduction coupling with oxidation process in order to acquire simultaneously complete both decolorization and mineralization of C.I. Acid Black 24. From the experimental data, the zero-valent iron addition alone can decolorize the dye wastewater yet it demanded longer time than ZVI coupled with UV/H(2)O(2) processes (Red-Ox). Moreover, it resulted into only about 30% removal of the total organic carbon (TOC), which was capable to be effectively mineralized by UV/H(2)O(2) process. The proposed sequential ZVI-UV/H(2)O(2) integration system cannot only effectively remove color and TOC in AB 24 wastewater simultaneously but also save irradiation power and time demand. Furthermore, the decolorization rate constants were about 3.77-4.0 times magnitude comparing with that by UV/H(2)O(2) process alone.  相似文献   

11.
In the presence of O(3), the oxidative decolorization reaction on molasses fermentation wastewater with SnO(2) as a catalyst was studied. The results showed that SnO(2) accelerated the ozone oxidation reaction and the oxidative decolorization of molasses fermentation wastewater was accelerated. Influences on SnO(2) catalytic ozonation activity by precipitants and the calcination temperature were studied by XRD, IR and TG-DSC. SnO(2) prepared by ammonia as the precipitant had higher catalytic activity and a stronger dehydroxylation. The IR spectra of adsorbed pyridine showed that there were Lewis acid sites on the surface of this SnO(2) catalyst. The main factors influencing molasses fermentation wastewater oxidative decolorization were the wastewater concentration, the O(3) concentration, the pH value and the catalyst dosage. The decolorization of wastewater was improved with the increase of the wastewater dilution ratio, the ozone concentration and the catalyst dosage. High activity *OH was found to be existing with less amount and low concentration in the process of SnO(2) catalyzed ozonation decolorization.  相似文献   

12.
Decolorization of C.I. Reactive Red 2 by catalytic ozonation processes   总被引:2,自引:0,他引:2  
This study adopted O3, UV/TiO2/O3, O3/Mn(II) and O3/MnO2 systems to assess the decolorization efficiency of C.I. Reactive Red 2 (RR2). The decolorization rate increased with concentrations of Mn(II) and MnO2 in the ranges 0.05-0.1 and 0.05-0.8 g/l, respectively. However, when 0.5-3g/l TiO2 was added, the effect of TiO2 dosage for RR2 decolorization was insignificant in the UV/TiO2/O3 system. At pH 2, the decolorization rate constants of O3, O3/Mn(II) (0.05 g/l), O3/Mn(II) (0.1g/l), O3/Mn(II) (0.15 g/l), O3/MnO2 (0.05 g/l) and O3/MnO2 (0.8 g/l) were 0.816, 2.001, 3.173, 3.087, 1.040 and 1.648 min(-1), respectively. After 5 min of reaction, the decolorization rates followed the order O3/Mn(II)>O3/MnO2>O3>UV/TiO2/O3; however, the TOC removal did not vary among these systems. Adding ethanol reduced the decolorization rate of the UV/TiO2/O3 and O3/MnO2 systems and did not affect the decolorization rate of O3/Mn(II). Decolorization in UV/TiO2/O3, O3/Mn(II) and O3/MnO2 systems is suggested to proceed by mainly radical-, surface- and radical-type mechanisms, respectively. Additionally, direct ozonation cannot be ignored in O3/Mn(II) and O3/MnO2 systems.  相似文献   

13.
The wastewater from textile dyeing industry is difficult to be treated successfully according to both high variability of composition and color intensity. To investigate the effects of reactor gap size and UV dosage on the decolorization of dye wastewater, a commercially available azo dye C.I. Acid Blue 113 was chosen as a model compound. UV/H2O2 processes with various gap sizes and setups of plug flow reactor and recirculated batch reactor were proposed to deal with the dye wastewater in this study. The experimental parameters including the design of reactor configurations of annular gap size, and in batch system or plug flow reactors and hydrogen peroxide dosage, UV dosage were investigated. The gap size of reactor was adjusted by different diameter of reactor shells in order to optimize the reactor configuration. The color removal percentage was used to evaluate the treatment efficiency. An optimal hydrogen peroxide concentration of 46.53 mM was observed in this study for highest decolorization rate. Besides, the pseudo-first-order rate constant of 3.14 min(-1) was obtained by plug flow reactor with 0.5 cm gap size, 120.70 W/l of UV dosage and 23.27 mM of H2O2 dosage. The first-order rate constant, which was about 20 times less than that of plug flow reactor, was obtained 0.1422 min(-1) by recirculated batch reactor with 2.0 cm gap size, 7.0 W/l of UV and 23.27 mM of H2O2 dosages. Ultimately, we developed an effective pre-treatment or treatment technology for dye wastewater to provide the dyeing industries and dye manufacturers an alternative to meet the effluent standards.  相似文献   

14.
This study makes a comparison between UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton>EC>UV/Nano-TiO(2)>Fenton-like>EF. Desired concentrations of Fe(2+) and H(2)O(2) for the abatement of AB9 in the Fenton-based processes were found to be 10(-4)M and 2 x 10(-3) M, respectively. In the case of UV/Nano-TiO(2) process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO(2) nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO(2) nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m(2) in electrocoagulation process.  相似文献   

15.
In this study, the successful decolorization and mineralization of phthalocyanine dye (C.I. Direct Blue 199, DB 199) by an advanced oxidation process (AOP), UV/H2O2, were observed while the experimental variables such as hydrogen peroxide dosage, UV dosage, initial dye concentration and pH were evaluated. The operating conditions for 90% decolorization of C.I. DB 199 and 74% removal of total organic carbon (TOC) were obtained for initial dye concentration of 20 mgl(-1), hydrogen peroxide dosage of 116.32 mM, UV dosage of 560 W and pH of 8.9 in 30 min. The pseudo-first order rate constant is a linear function of reverse of initial dye concentration. They linearly increased by incrementing UV dosage, yet were non-linear enhancement by increasing the hydrogen peroxide concentration. A higher pseudo-first order rate constant about 0.15 min(-1) was observed while hydrogen peroxide concentration within 5.82-116.32 mM. Moreover, the decolorization of C.I. DB 199 was observed to be more difficult than that of an azo dye, C.I. Acid Black 1, under the same operating conditions.  相似文献   

16.
The decolorization and mineralization of cotton dyeing effluent containing C.I. Acid Black 22 as well as synthesized C.I. Acid Black 22 wastewater by means of advanced oxidation processes (AOPs), such as UV/H2O2, O3 and pre-ozonation coupled with UV/H2O2 processes, were evaluated in this study. It was observed that the UV/H2O2 process took longer retention time than ozonation for color removal of dye bath effluent. Reversely, the total organic carbon (TOC) removal showed different phenomena that ozonation and UV/H2O2 process obtained 33 and 90% of removal efficiency for 160 min of retention time, respectively. Additionally, laboratory synthesized dye wastewater was substantially more efficient in the decolorization process than dye bath effluent. Therefore, in this work, pre-ozonation coupled with UV/H2O2 process was employed to enhance the reduction of both color and TOC in dye bath effluent at the same time. At the same time, the retention time demand was reduced to less than 115 min for 90% removal of TOC and color by this combined process.  相似文献   

17.
Photocatalytic oxidation of VX simulant 2-(butylamino)ethanethiol   总被引:2,自引:0,他引:2  
Photocatalytic oxidation of 2-(butylamino)ethanethiol (BAET) was undertaken in aqueous suspension of TiO2 Hombikat UV 100 and Degussa P25 under different initial reaction conditions in order to determine the best parameters for the fastest mineralization of the substrate. BAET is considered to be a simulant for the VX chemical warfare agent. The application of ultrasound had only a small positive effect on the BAET photocatalytic degradation. The highest mineralization rate of 0.433 mg/(l min) was found in unbuffered TiO2 Degussa P25 suspension with initial pH value of about 9.4, TiO2 concentration 500 mg/l and the initial BAET concentration 1000 mg/l. Decreasing of the initial solution pH to 6.1 or below stops the mineralization of BAET while increasing of pH to about 11 drastically changed the degradation profile. At this initial pH, the first 100 min of reaction led to only oxidation of sulfur moiety and organic intermediates accumulated in the solution. Thereafter, mineralization of the products started. The main detected volatile product was butyl aldehyde and the main polar one was 2-(butylamino) acetic acid. In the case of TiO2 Hombikat UV 100, conversion of TOC at initial pH 11 exceeded that at initial pH 9.1. For Degussa P25, the starting pH 9.4 was the best for TOC conversion. The results can be used for treatment of water from pollutants with aliphatic nitrogen and sulfur atoms.  相似文献   

18.
Cyanide waste is found predominantly in industrial effluents generated from metallurgical operations. The toxicity of cyanide creates serious environmental problems. In this paper, oxidation of cyanide in aqueous solution was investigated using chemical and photochemical process. Chemical oxidation was studied at room temperature using H2O2 as oxidant and Cu2+ as catalyst. Photochemical oxidation was studied in an annular type batch photoreactor of 1l capacity using 25 W low-pressure (81.7% transmission at 254 nm wavelength) ultraviolet (UV) lamp along with H2O2 as oxidant. The effect of Cu2+ catalysis was also studied. It was observed that in absence of UV source, the degradation of cyanide by H2O2 alone was very slow, whereas copper ions accelerated the rate of reaction thereby acting as catalyst. Copper formed a complex with cyanide ion, i.e. tetracyanocuprate which had greater affinity for H2O2. Cyanate hydrolysis was also favoured by copper ions. As Cu2+ ion concentration was increased, rate of degradation also increased. Photochemical oxidation by H2O2 and Cu2+ was found to be the best system for cyanide degradation. CN- (100 mg/l) was degraded to non-detectable level in 9 min at pH 10.0 with optimum H2O2 dose of 35.5 mM and Cu2+ dose of 19 mg/l. Reaction kinetics of cyanide oxidation was found to be pseudo-first order and the rate constant has been determined for different processes.  相似文献   

19.
Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 degrees C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q(L)) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe(2+) was set to 10mg/L. The influence of the H(2)O(2) amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 degrees C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q(L) values. For a given phenolic mixture a temperature range of 30-50 degrees C in the Fenton pretreatment with a H(2)O(2) dosage between 20 and 40% of the stoichiometric amount required can be proposed.  相似文献   

20.
The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H(2)O(2) dose, Fe(+2), COD:H(2)O(2) ratio and Fe(+2):H(2)O(2) ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48h (24h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l(-1) for rho-hydroxy-benzaldhyde to 3.273 mg l(-1) for cinnamic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号