首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为探讨混沌同步现象和相应的动力学特性,研究了两类特殊的混沌系统即多涡旋混沌系统和分数阶混沌系统的同步.为此,设计了一种非线性反馈控制器,实现了多涡旋类Lorenz的混沌吸引子的投影同步;通过改变投影同步的比例系数,获得了与激励系统相对应的状态变量的任意比例输出.此设计还实现了分数阶超混沌系统的状态向量与任意信号的追踪同步,从而控制分数阶混沌信号趋于期望的周期轨道或平衡点,并实现分数阶混沌系统与整数阶混沌系统的异构追踪同步.最后设计了具有分数阶混沌特性的电路,借助仿真实验证实了分数阶超混沌系统的动力学行为.这些研究结果可以应用于许多领域,例如宏观经济系统的数据分析、保密通讯系统分析与设计等.  相似文献   

2.
提出一个新的分数阶混沌系统,该系统含有三个参数,三个非线性项.通过理论分析,给出了分数阶混沌系统存在混沌吸引子的必要条件,通过数值仿真给出了混沌吸引子的图像,接着设计自适应同步控制器和参数自适应律,实现分数阶混沌系统的同步,数值仿真的结果表明设计控制器很好的实现了驱动系统和响应系统的同步.  相似文献   

3.
研究了一类混沌系统的函数投影同步问题.基于Lyapunov稳定性理论和主动滑模控制方法,设计了主动滑模控制器,实现混沌系统的函数投影同步.数值仿真验证了该控制器的有效性和正确性.  相似文献   

4.
研究了一类混沌系统的函数矩阵投影同步问题,基于函数矩阵方法,利用Lyapunov稳定性理论和极点配置理论,设计了两个连续混沌系统之间的同步方案,同时设计了两个离散混沌系统之间的同步方案,实现了驱动系统与动态系统按给定的函数矩阵投影同步,并给出了证明,通过对Lorenz混沌系统,和Henon系统的数值模拟,表明了该方法的有效性.  相似文献   

5.
研究了具有未知参数和外界扰动的多个混沌系统之间的双路组合函数投影同步问题.首先给出了由四个混沌驱动系统和两个混沌响应系统组成的双路组合函数投影同步系统的定义,然后以Lyapunov稳定性理论和不等式变换方法为分析依据,设计了鲁棒自适应控制器和参数自适应律,使得两路同步系统中的响应系统和驱动系统按照相应的函数比例因子矩阵实现同步,并有效克服未知有界干扰和未知参数的影响.相应的理论分析和数值仿真证明了该同步方案的可行性和有效性.  相似文献   

6.
研究了一参数未知超混沌系统的函数投影同步问题.基于李雅谱诺夫稳定性理论,设计了实现混沌系统函数投影同步的有效非线性控制器,可以快速实现超混沌系统的加速函数投影同步,同时设计了参数控制律,有效的辨识了系统的未知参数,数值仿真验证了理论分析和数值计算的正确性.  相似文献   

7.
针对一类非线性时滞混沌系统,提出了一种新的自适应脉冲同步方案.首先基于Lyapunov稳定性理论、自适应控制理论及脉冲控制理论设计了自适应控制器、脉冲控制器及参数自适应律,然后利用推广的Barbalat引理,理论证明响应系统与驱动系统全局渐近同步,并给出了相应的充分条件.方案利用参数逼近Lipschitz常数,从而取消了Lipschitz常数已知的假设.两个数值仿真例子表明本方法的有效性.  相似文献   

8.
研究了具有不同阶数的受扰不确定混沌系统的降阶修正函数投影同步问题.基于Lyapunov稳定性理论和自适应控制方法,设计了统一的非线性状态反馈控制器和参数更新规则,使得混沌响应系统按照相应的函数尺度因子矩阵和混沌驱动系统的部分状态变量实现同步.方法考虑了实际系统中的模型不确定性和外界扰动,具有较强的实用性和鲁棒性.数值仿真证明了控制方法的有效性.  相似文献   

9.
在参数未知的情况下,通过设计最优控制器和参数自适应律实现了新的四维混沌系统与超混沌吕系统的同步.接着根据Lyapunov稳定性原理和Hamilton-Jacobi-Bellman方程,选取Lyapunov函数和合适的性能指标函数从理论上证明这种方法的有效性.理论证明结果表明所设计的控制器能使性能指标函数取得最小值,是最优的.最后又通过matlab软件对同步系统进行数值仿真,仿真结果显示驱动系统与响应系统能够很好地达到了同步,表明方法是可行有效的.  相似文献   

10.
针对带有不确定参数的一类混沌金融系统,提出了实现驱动系统和响应系统广义投影同步的自适应控制策略,并基于Lyapunov稳定性理论给出和验证了广义投影同步稳定性判据.数值仿真验证了控制策略和理论分析的有效性.  相似文献   

11.
Based on the Lyapunov stability theorem, a new type of chaos synchronization, general hybrid projective complete dislocated synchronization (GHPCDS), is proposed under the framework of drive-response systems. The difference between the GHPCDS and complete synchronization is that every state variable of drive system does not equal the corresponding state variable, but equal other ones of response system while evolving in time. The GHPCDS includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. As examples, the Lorenz chaotic system, Rössler chaotic system, hyperchaotic Chen system and hyperchaotic Lü system are discussed. Numerical simulations are given to show the effectiveness of these methods.  相似文献   

12.
This paper presents a new fractional-order hyperchaotic system. The chaotic behaviors of this system in phase portraits are analyzed by the fractional calculus theory and computer simulations. Numerical results have revealed that hyperchaos does exist in the new fractional-order four-dimensional system with order less than 4 and the lowest order to have hyperchaos in this system is 3.664. The existence of two positive Lyapunov exponents further verifies our results. Furthermore, a novel modified generalized projective synchronization (MGPS) for the fractional-order chaotic systems is proposed based on the stability theory of the fractional-order system, where the states of the drive and response systems are asymptotically synchronized up to a desired scaling matrix. The unpredictability of the scaling factors in projective synchronization can additionally enhance the security of communication. Thus MGPS of the new fractional-order hyperchaotic system is applied to secure communication. Computer simulations are done to verify the proposed methods and the numerical results show that the obtained theoretic results are feasible and efficient.  相似文献   

13.
A special full-state hybrid projective synchronization type is proposed in this paper. The anti-synchronization and complete synchronization can be achieved simultaneously in this new synchronization phenomenon. We point out how to realize this synchronization in chaotic systems: anti-synchronization in symmetrical coordinate subspace and complete synchronization in its normal coordinate subspace. Two illustrative examples, multi-scroll chaotic system by the partial Lyapunov stability theory, and a four-dimensional chaotic system by the invariance principle of differential equation are presented to exhibit this new synchronization.  相似文献   

14.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

16.
This paper investigates drive-response synchronization of chaotic systems with discontinuous right-hand side. Firstly, a general model is proposed to describe most of known discontinuous chaotic system with or without time-varying delay. An uniform impulsive controller with multiple unknown time-varying delays is designed such that the response system can be globally exponentially synchronized with the drive system. By utilizing a new lemma on impulsive differential inequality and the Lyapunov functional method, several synchronization criteria are obtained through rigorous mathematical proofs. Results of this paper are universal and can be applied to continuous chaotic systems. Moreover, numerical examples including discontinuous chaotic Chen system, memristor-based Chua’s circuit, and neural networks with discontinuous activations are given to verify the effectiveness of the theoretical results. Application of the obtained results to secure communication is also demonstrated in this paper.  相似文献   

17.
In this paper, a method of the lag projective synchronization of a class of complex network constituted nodes with chaotic behavior is proposed. Discrete chaotic systems are taken as nodes to constitute a complex network and the topological structure of the network can be arbitrary. Considering that the lag effect between network node and chaos signal of target system, the control input of the network and the identification law of adjustment parameters are designed based on Lyapunov theorem. The synchronization criteria are easily verified.  相似文献   

18.
This work presents multivalued chaotic synchronization via coupling based on the Poincaré plane. The coupling is carried out by an underdamped signal, triggered every crossing event of the trajectory of the master system through a previously defined Poincaré plane. A master–slave system is explored, and the synchronization between the systems is detected via the auxiliary system approach and the maximum conditional Lyapunov exponent. Due to the response to specific conditions two phenomena may be obtained: univalued and multivalued synchronization. Since the Lyapunov exponent is not enough to detect these two phenomena, the distance between the pieces of trajectories of the slave and auxiliary systems with different initial conditions is also used as a tool for the detection of multivalued synchronization. Computer simulations using the benchmark chaotic systems of Lorenz and Rössler are used to exemplify the approach proposed.  相似文献   

19.
This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to verify the proposed control and synchronization methods. Finally, the effectiveness of the proposed methods is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号