首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
Shear wave splitting measurements in South Kamchatka during the 3-year period (1996–1998) in which the Kronotsky Earthquake (M=7.7, December 5, 1997) occurred are used to determine anisotropic parameters of the subduction zone and shear wave splitting variations with time. The local small seismic events recorded at the Petropavlovskaya IRIS station (PET) were analyzed. The dominant azimuths of the fast shear wave polarizations for the 3-year period are defined within N95±15°E, which are consistent with the general Pacific Plate motion direction. Modeling of fast shear wave polarizations shows that HTI model with the symmetry axis oriented along N15°E±10° fit well the observed data for events the focal depths of which are less than 80 km. For the greater depths, the orthorhombic symmetry of medium is not excluded. The anisotropy coefficient increases generally with depth from 1–2% in the crust to 4–7.5% in the subducting plate. Variations in time delays show a general increase up to 10–15 ms/km during 1996–1997 before the large crustal earthquake series (M≈5.5–7) in the Avacha Bay and before the Kronotsky Earthquake. Analysis of fast S-wave azimuths of mantle events reveals a temporal cyclic variation. The most regular variations are observed for fast azimuths of deep events with a period of about 172 days over the 3-year period. The fast polarizations of crustal events behave comparatively stable. It is assumed that the major instabilities in stress state are localized in the descending slab and influenced the upper mantle and comparatively stable crust.  相似文献   

2.
Typhoon Herb in 1996 caused widespread debris flows in central Taiwan. The 7.3 Chi-Chi earthquake on September 21, 1999, which also took place in central Taiwan, induced many landslides in the region. These landslides turned into debris flows when Typhoon Toraji struck Taiwan in 2001. This research selects three regions which suffered a ground motion class of 5, 6, and 7 on the Richter scale during the Chi-Chi earthquake as study areas. Air photos from 1997 and 2001 of these regions are used to map the gully-type debris flows that took place after Typhoons Herb and Toraji, respectively. The gullies adjacent to the debris flow, but without a trace of debris flows, are also mapped as the non-debris flow data. The topography, hydrogeology, and rainfall factors – where debris flow occurred and in which there was no occurrence of debris flows in these gullies were retrieved from DTM, geological maps, and iso-countour maps, and of rainfall through GIS processing. These characteristic are introduced into a probabilistic neural network to build a predicting model for the probability of the occurrence of debris flows. Three series of cross analyses are conducted to compare the probability of the occurrence of debris flows of the same dataset predicted by different prediction models. The results reveal that the susceptibility of debris flows was elevated after the Chi-Chi earthquake struck. The upsurge of susceptibility was more obvious for the regions that received a higher class of ground motion.  相似文献   

3.
The influence of temperature on tropospheric ozone (O3) concentrations in urban and photochemically polluted areas in the greater Athens region are investigated in the present study. Hourly values of the ambient air temperature used for studying the urban heat island effect in Athens were recorded at twenty-three experimental stations while ozone concentration values were measured at three of the above-mentioned stations and for a period of two years (1996–1997). The linear correlation between ozone concentration and air temperature values as well as the temporal variation of temperature and ozone concentration, for the above-mentioned experimental stations, were calculated and analysed. Moreover, a neural network approach was used for investigating the impact of temperature on the ozone concentration values over the greater Athens area. The neural network model used ambient air temperature as one of its input parameters and it was found that temperature is a predominant parameter, affecting considerably the ozone concentration values.  相似文献   

4.
Temporal variation in rainfall created a germination window for seedling establishment in the upper intertidal marshes of southern California. In this highly variable climate, total annual rainfall was highly variable, as was the timing and size of rainfall during the wet season. Daily rainfalls>3.0 cm were rare in the long-term record but created germination opportunities that had two components: low salinity and high moisture. During the 1996–1997 wet season, only one-day rainfalls>3.0 cm resulted in large increases in soil moisture and decreases in soil salinity. Germination in the upper intertidal marsh of three wetlands followed two large (>3.0 cm) rainfall events in the relatively dry 1996–1997 season and multiple medium and small rainfall events in the wetter 1997–1998 season. In addition to rainfall, plant cover and soil texture influenced, spatial and temporal variation in soil salinity and moisture. Daily and weekly sampling adequately described soil moisture and salinity so that germination could be predicted; monthly sampling would have missed the low-salinity and high-moisture events that trigger germination.  相似文献   

5.
Data from the nation-wide GPS continuous tracking network that has been operated by the Geographical Survey Institute of Japan since April 1996 were used to study crustal deformation in the Japanese Islands. We first extracted site coordinate from daily SINEX files for the period from April 1, 1996 to February 24, 2001. Since raw time series of station coordinates include coseismic and postseismic displacements as well as seasonal variation, we model each time series as a combination of linear and trigonometric functions and jumps for episodic events. Estimated velocities were converted into a kinematic reference frame [Heki, K., 1996. Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame: implication for reversal timescale revision. J. Geophys. Res., 101: 3187–3198.] to discuss the crustal deformation relative to the stable interior of the Eurasian plate. A Least-Squares Prediction technique has been used to segregate the signal and noise in horizontal as well as vertical velocities. Estimated horizontal signals (horizontal displacement rates) were then differentiated in space to calculate principal components of strain. Dilatations, maximum shear strains, and principal axes of strain clearly portray tectonic environments of the Japanese Islands. On the other hand, the interseismic vertical deformation field of the Japanese islands is derived for the same GPS data interval. The GPS vertical velocities are combined with 31 year tide gage records to estimate absolute vertical velocity. The results of vertical deformation show that (1) the existence of clear uplift of about 6 mm/yr in Shikoku and Kii Peninsula, whereas pattern of subsidence is observed in the coast of Kyushu district. This might reflect strong coupling between the Philippine Sea plate and overriding plate at the Nankai Trough and weak coupling off Kyushu, (2) no clear vertical deformation pattern exists along the Pacific coast of northeastern Japan. This might be due to the long distance between the plate boundary (Japan trench) and overriding plate where GPS sites are located, (3) significant uplift is observed in the southwestern part of Hokkaido and in northeastern Tohoku along the Japan Sea coast. This is possibly due to the viscoelastic rebound of the 1983 Japan Sea (Mw 7.7) and the 1993 Hokkaido–Nansei–Oki (Mw 7.8) earthquakes and/or associated with distributed compression of incipient subduction there. We then estimate the elastic deformation of the Japanese Islands caused by interseismic loading of the Pacific and Philippine Sea subduction plates. The elastic models account for most of the observed horizontal velocity field if the subduction movement of the Philippine Sea Plate is 100% locked and if that of the Pacific Plate is 70% locked. However, the best fit for vertical velocity ranges from 80% to 100% coupling factor in southwestern Japan and only 50% in northeastern Japan. Since horizontal data does not permit the separation of rigid plate motion and interplate coupling because horizontal velocities include both contributions, we used the vertical velocities to discriminate between them. So, we can say there is strong interplate coupling (80%–100%) over the Nankaido subduction zone, whereas it is about 50% only over the Kurile–Japan trench.  相似文献   

6.
General circulation models (GCMs) fitted with stable isotope schemes are widely used to interpret the isotope–climate relationship. However, previous studies have found that the spatiotemporal isotope/precipitation correlation simulated by GCMs is stronger and more widespread than the observed value. To understand the reason for this failure, we investigated the factors influencing the empirically well-known isotope/precipitation relationship, or precipitation amount effect, in the tropics using newly obtained daily precipitation isotope monitoring data over Asia. As in previous studies, we found an apparent correlation between the long-term monthly mean isotopic content and the corresponding precipitation amount (local precipitation) observed at sub-tropical island stations. Furthermore, on a monthly timescale, the isotopic variability of precipitation for these stations was more clearly related to the regional precipitation amount than to local precipitation. This correlation of isotopic content with the regional precipitation amount was observed at the equatorial (Maritime Continent) stations. For these stations, isotope/local precipitation relationships only appeared over longer timescales, with different regression line slopes at each station. However, at the coastal stations, there was a strong linear relationship between the monthly mean isotopic content and corresponding regional precipitation, and regression line slopes were spatially uniform. For the two sub-tropical terrestrial (Indochina Peninsula) stations, the isotopic minimum appeared without any relationship to rainfall amount but usually occurred at the leeward station during the rainy season. These results suggest that the isotopic variations of precipitation did not depend on the ’local’ rain-out history but on the rain-out process in the surrounding region. However, local rainfall events were associated not only with large-scale disturbances but also with regional circulation. Thus, the scale difference of controlling factors between local rainfall amount and isotopic value results in the weakening of the rainfall amount effect at the observation site and in the discrepancy between GCM simulations and observations. This finding suggests that regional precipitation–isotope relationships should be compared with GCM results. Additionally, because the isotope signal reflects the rain-out history at a regional scale, evaluation of the isotopic field using isotopic GCMs will be useful not only to reconstruct paleoclimate conditions but also to examine how GCMs can reproduce real atmospheric circulation over the tropics.  相似文献   

7.
A method of quantitative comparison of eutrophication of an area is proposed for the Baltic Sea, based on pigment content in sediments. The pigments concerned were chlorins a (i.e. chlorophylls a, b and selected chlorophyll a derivatives) and chlorophylls c. The analyses were performed on 300 samples from different layers of recent (0–10 cm) sediments, collected from about 50 stations, at different sites of the southern Baltic, including the estuaries of the two largest Polish rivers, in different seasons between 1992 and 2001, before and after the great flood of July 1997. The results are related to sampling site, sediment layer and hydrological conditions and also to organic carbon and Eh in sediments, oxygen and salinity in near-bottom waters. Depending on different chlorin a content in 0–1 and 0–10 cm layers, the sampling sites are classified into one of three groups: 1. Szczecin Lagoon and the Deep of Gda sk stations (permanently eutrophic, chl a in 0–1 cm >40 nmol/g, Σchlns a in 0–1 in 0–10 cm layer, Σchlns aA in Σchlns a=55–65%), 2. Open sea stations (mesotrophic/oligotrophic, chl a in 0–1 cm <10 nmol/g, Σchlns a in 0–1 in 0–10 cm layer, Σchlns aA in Σchlns a 50%; and 3. Coastal stations (periodically eutrophic, chl a in 0–1 cm 10–40 nmol/g, Σchlns aA in Σchlns a 40%). The correlation coefficient between chlorophyll a and chlorophylls b and c indicates the classes of algae, which could be the main source of organic matter in the sediments. A high correlation with chlorophylls c is a marker of diatoms; a high correlation with chlorophyll b is a marker of green algae; and low correlation both with chlorophylls b and c—indicates a high blue–green algae input.  相似文献   

8.
Weak and strong ground motions were numerically predicted for three stations of the Ashigara Valley test site. The prediction was based on the records from a rock-outcrop station, one weak-motion record from a surface-sediments station, and the standard geotechnical model. The data were provided by the Japanese Working Group on the Effects of Surface Geology as a part of an international experiment. The finite-difference method for SH waves in a 2-D linear viscoelastic medium (a causalQ model) was employed.Comparison with the real records shows that at two stations the predictions fit better than at the third one. Strangely, the two better predictions were for stations situated at larger distances from the reference rock station (one station was on the surface, the other in a borehole). The strong ground motion (the peak acceleration of about 200 cm s–2) was not predicted qualitatively worse than the weak motion (8 cm s–2). A less sophisticated second prediction (not submitted during the experiment), in which we did not attempt to fit the available weak-motion record at the sedimentary station, agrees with the reality significantly better.  相似文献   

9.
甘肃中部集水观测试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
根据甘肃省中部的3年集水观测资料,分析了径流系数与集水面材料、坡度、雨强的关系,并结合甘肃河东地区19个气象站的自记降水资料,估算了平均径流系数及其均方差等,为集水技术在农业上的应用提供科学依据.  相似文献   

10.
 Ankara Creek is often subjected to overflowing of sewage caused by rainfall or direct discharge of raw sewage. Alluvial aquifers adjacent to Ankara Creek and its tributaries have considerable groundwater potential. The present status of groundwater quality is far from drinking water standards. Groundwater contamination in Ankara is suspected to be caused by Ankara Creek which is heavily polluted by raw sewage discharge, surface runoff and other common sources. In order to investigate the influence of heavily polluted Ankara Creek on the groundwater contamination in the adjacent alluvial aquifers, five sampling stations on Ankara Creek and 25 water wells were monitored during 1996. At five different sampling periods, water samples were collected from both surface water and groundwater. Chemical analyses of basic ions, pollution parameters and heavy metals in natural waters were carried out. The organic pollution prevails in Ankara Creek whereas total dissolved solids (TDS) and heavy metal concentrations are considerably low. Starting from the idea that Ankara Creek somewhat influences the groundwater quality and the contaminants in groundwater should attenuate with respect to distance, a series of water wells in a certain area, each having different distance from the creek, were examined using four pollution parameters. It is concluded that Ankara Creek barely influences the aquifer systems in connection. This is attributed to two reasons: rapid attenuation of contaminants due to dilution in groundwater and a blanket of very fine sized materials covering the bottom of Ankara Creek. Received: 28. April 1997 · Accepted: 23. February 1998  相似文献   

11.
The Castanhão reservoir was built in the state of Ceará, a dry region in Northeastern Brazil, to regulate the flow of the Jaguaribe River, for irrigation, and for power generation. It is an earth-filled dam, 60 m high, with a water capacity of 4.5 × 109 m3. The seismicity in the area has been monitored since 1998, with a few interruptions, using one analog or one digital station and, during a few periods, a three-station network. The first earthquakes likely to be induced events were detected in 2003, when the water level was about 20 m high. In early 2004 a very heavy rainfall season quickly filled the reservoir. Shortly after, an increase in the seismic activity occurred and many micro-earthquakes were recorded. We suggest that this activity resulted from an increase in pore pressure due to undrained response. Therefore, we may classify this cluster of micro-earthquakes as “initial seismicity.” We deployed a network with four analog stations in the area, following this activity, to determine the epicentral zone. At least three epicentral areas under the reservoir were detected. The spatio-temporal analysis of the available data revealed that the seismicity occurs in clusters and that these were activated at different periods. We identified four sets of faults (N–S-, E–W-, NW–SE-, and NE–SW-oriented), some of which moved in shallow crustal levels and as recently as the Quaternary (1.8 Ma). Under the present-day stress regime, the last two sets moved as strike-slip structures. We suggest a possible correlation between dormant faults and the observed induced seismicity.  相似文献   

12.
The Dead Sea is a terminal lake of one of the largest hydrological systems in the Levant and may thus be viewed as a large rain gauge for the region. Variations of its level are indicative of the climate variations in the region. Here, we present the decadal- to centennial-resolution Holocene lake-level curve of the Dead Sea. Then we determine the regional hydroclimatology that affected level variations. To achieve this goal we compare modern natural lake-level variations and instrumental rainfall records and quantify the hydrology relative to lake-level rise, fall, or stability. To quantify that relationship under natural conditions, rainfall data pre-dating the artificial Dead Sea level drop since the 1960s are used. In this respect, Jerusalem station offers the longest uninterrupted pre-1960s rainfall record and Jerusalem rains serve as an adequate proxy for the Dead Sea headwaters rainfall. Principal component analysis indicates that temporal variations of annual precipitation in all stations in Israel north of the current 200 mm yr−1 average isohyet during 1940–1990 are largely synchronous and in phase (70% of the total variance explained by PC1). This station also represents well northern Jordan and the area all the way to Beirut, Lebanon, especially during extreme drought and wet spells. We (a) determine the modern, and propose the past regional hydrology and Eastern Mediterranean (EM) climatology that affected the severity and length of droughts/wet spells associated with multiyear episodes of Dead Sea level falls/rises and (b) determine that EM cyclone tracks were different in average number and latitude in wet and dry years in Jerusalem. The mean composite sea level pressure and 500-mb height anomalies indicate that the potential causes for wet and dry episodes span the entire EM and are rooted in the larger-scale northern hemisphere atmospheric circulation. We also identified remarkably close association (within radiocarbon resolution) between climatic changes in the Levant, reflected by level changes, and culture shifts in this region.  相似文献   

13.
 The expansion of Caramanico Terme in this century has led to the urbanization of marginally stable valley slopes, and this has coincided with the apparent acceleration of landslide processes. Recent landslides on man-modified slopes were caused, but not necessarily triggered, by heavy precipitation (antecedent moisture was a more critical factor than the amount of storm rainfall). Because no important landslides on natural slopes in the same period were reported in the Caramanico area, a clear distinction must be made between natural settings and those modified by man when determining rainfall thresholds for predictive purposes. In recently urbanized mountainous environments, the thresholds used to assess landslide hazards should not be weighted too heavily on old historical records of precipitation and associated mass movements. Instead, more weight ought to be given to the period following the occurrence of any major anthropogenic and natural (e.g. high-magnitude earthquake) modification of slope setting. Received: 19 October 1996 · Accepted: 25 June 1997  相似文献   

14.
Spatial variability and rainfall characteristics of Kerala   总被引:1,自引:0,他引:1  
Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10‡N (north Kerala) fall into one group and they receive more rainfall than stations south of 10‡N (south Kerala). Group I stations receive more than 65% of the annual rainfall during the south-west monsoon period, whereas stations falling in Group II receive 25–30% of annual rainfall during the pre-monsoon and the north-east monsoon periods. The meteorology of Kerala is profoundly influenced by its orographical features, however it is difficult to make out a direct relationship between elevation and rainfall. Local features of the state as reflected in the rainfall distribution are also clearly brought out by the study.  相似文献   

15.
High-resolution paleomonsoon proxy records from peat and eolian sand–paleosol sequences at the desert–loess transition zone in China denote a rapid oscillation from cold–dry conditions (11,200–10,60014C yr B.P.) to cool–humid conditions (10,600–10,20014C yr B.P.), followed by a return to cold–dry climate (10,200–10,00014C yr B.P.). Variations in precipitation proxies suggest that significant climatic variability occurred in monsoonal eastern Asia during the Younger Dryas interval. Late-glacial climate in the Chinese desert–loess belt that lies downwind from Europe was strongly influenced by cold air from high latitudes and from the North Atlantic via the westerlies. The inferred precipitation variations were likely caused by variations in the strength of the Siberian high, which influenced the pressure gradient between land and ocean and therefore influenced the position of the East Asian monsoon front.  相似文献   

16.
Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System   总被引:6,自引:2,他引:6  
Abidin  Hasanuddin Z.  Djaja  Rochman  Darmawan  Dudy  Hadi  Samsul  Akbar  Arifin  Rajiyowiryono  H.  Sudibyo  Y.  Meilano  I.  Kasuma  M. A.  Kahar  J.  Subarya  Cecep 《Natural Hazards》2001,23(2-3):365-387
Jakarta is the capital city of Indonesia with a population of about 10 million people, inhabiting an area of about 25 × 25 km. It has been reported for sometime that locations in Jakarta are subsiding at different rates. Up to the present, there has been no comprehensive information about the characteristics and pattern of land subsidence in the Jakarta area. Usually land subsidence in Jakarta is measured using extensometers and ground water level observations, or estimated using geological and hydrological parameters. To give a better picture about land subsidence, geodetic-based monitoring systems utilizing leveling and GPS surveys have also been implemented.The land subsidence characteristics of Jakarta and its surrounding area areinvestigated using data from three repeated leveling surveys performed in1982, 1991, and 1997, and two repeated GPS surveys conducted in 1997and 1999. Leveling surveys detected subsidence up to about 80 cm duringthe period of 1982–1991, and up to about 160 cm during the 1991–1997period; while GPS surveys observed subsidence up to about 20 cm duringthe period of 1997–1999. Comparison with the hydrological data shows thatland subsidence in Jakarta is strongly related to excessive groundwater extraction.  相似文献   

17.
Here the authors present results of an isotope study on precipitation collected during a 2-a period from a rain-gauge network consisting of 6 stations located at different elevations in the Hyblean Mountains (HM) region, in south-eastern Sicily. The slope of the local meteoric water line (δD = 6.50 δ18O + 9.87) obtained for the region suggests that precipitation is affected by evaporation during rainfall events. The main variations in rainwater isotope composition are due to seasonal effects and elevation. An average 2H excess value of +21.2‰ was found for precipitation events less affected by evaporation (i.e. when the rainfall was >65 mm/month). The spatial distribution of O isotope composition of precipitation shows a negative gradient from east and south to the inner areas. The depositional rate of Cl, used as a tracer of the origin of air masses, is highest at the coastal rain-gauges (SR and MRG stations) and lowest on the northern flank of the HM region (SC station). Based on these findings, a model is proposed for the origin of precipitation in the HM region, which assumes that a Mediterranean-derived component is the main source of moisture in the studied area. D/H and 18O/16O ratios of inferred meteoric recharge waters were also compared with the isotope composition of waters collected from the main local springs and wells. The best linear fit of the δ18O vs δD relationship for Hyblean groundwater is δD = 4.85 δ18O–2.01. The enrichment of heavy isotopes in Hyblean groundwater is probably due to evaporation occurring after precipitation events or to a recharging contribution from surface waters (lakes or rivers) enriched in heavy isotopes.  相似文献   

18.
Pollen and δ13CTOM data obtained from two contrasting lake sequences (Lakes Kamalété and Nguène), located 200 km apart in the lowland rainforest of Gabon, provide complementary local and regional 1500-yr records of high resolution (15–30 yr) vegetation change. A combination of aquatic, semi-aquatic and terrestrial pollen showed in both records that the tropical rainforest increased during periods of high rainfall and decreased during drought intervals. The strong fluctuations of water balance at decadal scale during the “Medieval Warm Period” ( 1100–800 cal yr BP) coincided with a noticeable increase in shade-intolerant taxa, indicating recurring rainforest canopy disturbance. The δ13CTOM signal showed high-amplitude variations in both records, which positively correlates with the rainforest dynamics and local vegetation changes. The similar trends in both the pollen and the δ13CTOM signals between these sites demonstrate the regional broadly synchronous timing of shifting hydrological conditions. The largely positive co-variation between strong fluctuations of hydrological conditions and changes in rainforest structure and composition indicate that regional climatic change is probably the driving force for major rainforest dynamics in Gabon. Any significant anthropogenic impact on vegetation has not been clearly identified, and this issue still needs to be resolved independently by obtaining detailed archeological records across the interval 1400–800 BP, which currently seem to be extremely rare or not easily available.  相似文献   

19.
The inter-annual variation and linear trends of the surface air temperature in the regions in and around the Bay of Bengal have been studied using the time series data of monthly and annual mean temperature for 20–40 years period within 1951–1990. The study area extends from Pusma Camp of Nepal in the north and Kuala Lumpur of Malaysia in the south and between 80--100 ° E. The annual variation of temperature has also been studied using the mean monthly temperature for the variable time frames 1961–1975, 1976–1990 and 1961–1990. The trend of temperature has been analyzed using linear regression technique with the data from 1961–1990, which showed that the warming trend is dominant over the study areas except for a few stations. It has been found that Nepal shows predominant warming trends. Bangladesh and the adjacent areas of India and the northern part of Bay of Bengal adjacent to the Bangladesh coast have shown strong warming trends of the annual temperature with maximum at Dhaka (0.037 °C/year). The near equatorial zone, i.e., southern India, Sri Lanka and part of Thailand and Malaysia (Kuala Lumpur) shows warming trends in the annual mean temperature with strong warming at Pamban and Anuradhapura (around 0.04 °C/year). The cooling trends have been observed at a few stations including Port Blair, Yangoon and Cuttack. Further analysis shows the presence of prominent ENSO scale of variations with time period 4–7 years and 2–3 years for almost all the stations. The decadal mode with T >7 years is present in some data series. The results of the variations of temperature with respect to the Southern Oscillation Index (SOI) show that SOI has some negative correlation with temperature for most of the stations except those in the extreme northeast. It has been found that positive anomaly of temperature has been observed for El Niño events and negative anomaly for the La Nina events.  相似文献   

20.
With the aim of investigating the P-wave velocity structure below the Tertiary volcano Vogelsberg, a network of 10 mobile short period seismograph stations was installed in May 1987 for a period of 20 months. P-Wave travel time residuals relative to the station Kleiner Feldberg/Taunus (TNS) were determined for 168 seismic events using the Jeffreys - Bullen travel time tables. At all stations the relative residuals showed a positive sign, indicating a low velocity zone beneath the Vogelsberg. Maxima were found in the northern part of the Vogelsberg (station VAD +0.5 s) and in the region of the Amöneburger Basin (station RAU +0.28 s).The travel time residuals were inverted using the tomographic inversion method of Aki et al. (1977). The slowness perturbations of the single blocks were calculated relative to a crustal and upper mantle model of the Rhenish Massif. The results show an intracrustal low velocity body (about –9%) striking in a Variscan direction and underlying the north-eastern part of the Vogelsberg, and another velocity minimum (about – 6%) in the region of the Am6neburger Basin. In the lower crust and the upper mantle the velocities are reduced by about 4% relative to the starting model.The Variscan alignment of the low velocity zone under the Vogelsberg correlates with results of other geological studies. It can be assumed that during the rifting phase of the Upper Rhinegraben Variscan lineations have been reactivated, favouring uprising of magma along these old structures. The position and extension of the low velocity zone correlate with the assumed sediment distributions in the area of investigation. This may account for about one-half of the observed anomaly. The reason for the velocity reduction of about 4% in the entire underground region of the Vogelsberg down to a depth of about 70 km can be explained by the intensive fracturing of the lithosphere, caused by thermal and pressure gradients during the magma eruption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号