首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 515 毫秒
1.
对8407模具钢试样进行热浸渗铝,在试样表面形成了Fe—Al合金渗层.对渗铝试样进行高温氧化实验,使渗层表面形成了Fe—Al-O的混合氧化物.考察了渗铝温度和渗铝时间对渗层质量的影响;着重研究了不同氧化气氛下Fe—Al合金表面的氧化情况,确定了最佳高温氧化工艺.结果表明,8407钢热浸镀铝后,在600℃以下、纯O2气氛条件下氧化,Fe—Al合金表面生成了Fe3O4和Al2O的混合物.这层氧化膜与铝液不润湿,能较好地保护试样.因此这种工艺可能是合适的铝合金压铸模表面处理工艺.  相似文献   

2.
应用电化学方法及形貌观察研究了表面渗铝Q235钢在弱酸性卤水中的腐蚀行为.结果表明:在Cl-浓度为0.3 mol/L,pH=6的40℃的NaCl溶液中,渗铝层起到了阻止Q235钢基体腐蚀的作用,渗铝层主要是由Al,Fe化合物组成.Q235表面腐蚀产物疏松、容易脱落,渗铝钢表面腐蚀产物致密、均匀.渗铝钢表层形成的Al,Fe化合物连续致密,具有高效保护作用,Al-Fe合金渗层起到阴极保护的作用.  相似文献   

3.
为开发一种经济可靠的高温防护涂层,采用电弧喷涂方法在低碳钢表面制备FeCrAl/AlSi复合涂层,并对复合涂层试件进行900℃温度下的2400h加热,以考察其高温氧化表现和微观组织变化.实验结果表明:复合涂层中抗氧化元素的相互配合很好地保护了基体金属.900℃加热3h,防护涂层表面以及内部的氧化物以Al2O3为主,涂层/基体界面两侧形成Cr元素的扩散带.经过2400h加热后,复合涂层外表面氧化物层增厚,涂层/基体界面原位生成铬的氧化物,界面基体金属一侧存在约200μm宽的Cr元素扩散带.  相似文献   

4.
T91钢高温水蒸汽氧化层显微组织分析   总被引:1,自引:0,他引:1  
为避免火电厂发电机组的安全事故,深入研究了T91钢高温水蒸气氧化行为.根据氧化动力学规律,利用扫描电镜,X-ray物相分析仪对T91钢在高温水蒸汽条件下形成的氧化层显微组织进行分析.结果表明:随着温度的升高,氧化层脆性增大,破裂剥落部位为柱状晶部位;氧化层由内至外,Cr含量逐渐降低;氧化层生长方式以650℃~700℃分界,低于650℃,氧化层最外层出现须状晶芽,高于700℃,氧化层外层出现柱状晶芽和团簇状结构,随着温度的升高,组织变大.  相似文献   

5.
SiC的高温抗氧化性分析   总被引:6,自引:0,他引:6  
研究了碳化硅表面高温氧化层的微观结构 ,分析了反应产物对高温抗氧化性能的影响 .碳化硅材料在 136 0℃以下 ,表面氧化较为轻微 ,抗氧化性能稳定 .温度高于 136 0℃后 ,SiC颗粒的尖角部位首先被氧化 .所形成的表面氧化层与碳化硅基体的分界清晰 ,无过渡区 ,并且始终不能形成致密氧化层 .表面二氧化硅层中除了存在石英和方石英以外 ,还存在非晶态的二氧化硅 .高温时熔融态的二氧化硅不易于从碳化硅基体上脱落  相似文献   

6.
为了提高Al涂层的抗高温氧化性及硬度,采用电弧喷涂方法在Q235碳钢基体上制备了Al涂层.结果表明,经过加热扩散处理后Al涂层和基体之间形成了扩散层.涂层厚度、加热温度与加热时间对扩散层具有一定影响.当加热温度为800℃和900℃时,Al涂层主要形成相为Fe Al、Fe Al2、Fe Al3和Fe2Al5.经过加热扩散处理后Al涂层具有优良的抗高温氧化性,且平均硬度相比未经加热扩散处理的Al涂层提高了10倍以上,利用扩散系数求出的扩散层深度与实际扩散层深度相近.  相似文献   

7.
针对火炮身管在服役过程中发生的内膛氧化现象,利用电火花沉积技术在炮钢表面沉积NiCrAlY涂层,研究NiCrAlY涂层在900℃空气中的氧化行为。采用不连续称重法测定涂层的氧化动力学曲线,利用SEM/EDS、XRD表征涂层氧化前后的微观形貌、成分与相组成。结果表明:涂层由Al_3Ni_2和γ-Ni组成,与基体形成牢固的冶金结合;涂层在900℃空气中氧化100h的动力学曲线符合抛物线规律,氧化100h增重仅为0.946 mg/cm~2,极大地提高了CrNi3MoVA钢基体的高温抗氧化性能;经900℃空气氧化100h后,涂层表面形成连续、致密、粘附性良好的θ-Al_2O_3和α-Al_2O_3氧化膜。  相似文献   

8.
为了认识Super304H钢在水蒸气环境中的氧化行为,设计了1组供货态Super304H在700℃水蒸气环境下的5~8h的氧化模拟实验.在氧化之后利用扫描电子显微镜(SEM)观察氧化膜的结构和能谱(EDS),分析了膜层不同位置点的成分,另外采用mapping功能从截面分析了氧化层中O、Cr、Fe、Ni、Cu元素的分布情况,同时采用XRD分析了氧化层中的具体物相.结果表明:氧化层为双层结构,内外氧化层界面为原始界面,内层氧化膜致密,外层氧化膜疏松,在内层与基体之间存在有保护作用的Cr_2O_3氧化层.内层氧化膜富含Cr、Ni,而外层氧化膜富含Fe,结合XRD结果可知:外层氧化物主要为Fe_2O_3、Fe_3O_4,内层氧化物为Cr_2O_3、NiO.  相似文献   

9.
利用等离子喷焊技术在H13模具钢表面制备NiCrBSi+20%WC/Co喷焊层。研究表明,基体与喷焊层之间存在明显的分界面,与传统焊接接头的微观组织类似,喷焊层中出现垂直于界面结合方向的柱状晶,这种组织形态在等离子喷涂涂层中从未观察到,说明喷焊层NiCrBSi+20%WC/Co与H13钢基体之间的结合为冶金结合。XRD分析表明,喷焊层中的主要相为γ-(Fe,Ni),Cr7BC4,Ni4B3,Cr7C3和Co7W6,并且由于这些相的存在,使得表面喷焊层比H13钢基体具有更高的强度和硬度。  相似文献   

10.
研究了铸态Ti1100在不同温度下保温5小时的氧化增重和表面形貌.结果表明,随着加热温度的升高,铸造Ti1100氧化加重.300℃基本不氧化;500℃-700℃,Ti1100试样增重0.28-0.62%;1100℃氧化增重严重,达到12.73%;钛的氧化增重为吸氧.用JSM-6360LV型扫描电子显微镜观察试样表面形貌,300-600℃氧化膜极薄且致密;700℃试样表面有少量的氧化腐蚀坑,表面较致密;900℃试样表面有较多的突起氧化层,表面不致密;1100℃氧化层为板片状TiO2.氧化过程为高温时,氧化膜晶粒粗大变得疏松,氧通过氧化膜扩散进基体.  相似文献   

11.
为了研究T91钢高温空气氧化动力学,对其氧化层形貌进行了观察,利用X-Ray物相分析仪测试了氧化层的物相结构,利用热天平连续称重法对T91钢高温空气氧化速率进行研究.结果表明:T91钢高温空气氧化的动力学曲线符合对数规律,氧化速度低于1级完全抗氧化性的标准;氧化层由无晶界非晶体内层和细等轴晶与粗柱状晶的中层和外层组成,氧化层表层主要由Fe2O3构成.  相似文献   

12.
Cyclic oxidation behavior of Fe-9Cr-1Mo steel in water vapor atmosphere   总被引:2,自引:1,他引:1  
The cyclic oxidation behavior of Fe-9Cr-1Mo steel (9Cr-1Mo) in 10%H2O+90%Ar (volume fraction) atmosphere at 600, 650 and 700 for °C various time was studied. The oxidation mechanism of 9Cr-1Mo steel in 10%H2O+90%Ar atmosphere was discussed. The thermal stress was evaluated in two oxide layers to illustrate the spallation of the oxide layer. The experimental results indicate that there exists a duplex oxide scale with an outer layer of Fe2O3 and an inner layer of mixed (Fe, Cr)3O4 formed on 9Cr-1Mo steel during cyclic oxidation. Some cracks generated in both inner and outer oxide layers. Parts of oxide scales spalled from substrate during the cyclic oxidation. A higher tensile stress in the oxide layer is formed at the early oxidation stage than at the later oxidation stage during heating. This tensile stress results in the formation of cracks in the oxide layer. Foundation item: Project(2006–8) supported by the Huadian International Corporation Limited  相似文献   

13.
Oxidation behaviors of blank and CeO2 coated T91 steel were investigated at 600 °C in water vapor for up to 150 h.Gold marker was used to define the mass transport direction.The oxide scales were studied with X-ray diffractometry (XRD),scanning electron microscopy (SEM) and electron probe microanalyzer (EPMA).The oxidation resistance of the steel is improved by CeO2 coating,though the improvement is not remarkable.Ce-rich oxide band is located at the interface of the inner equiaxed layer and the outer colum...  相似文献   

14.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

15.
The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology. The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer. Wear property was investigated under room temperature and 450 ℃. The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature. The friction coefficient of infiltrated composite layer decreased with the increasing load. The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature. The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature. The oxidation, abrasive and fatigue abrasion was the main wear mechanism at room temperature. Oxidation abrasion, fatigue wear and adhesive wear dominated the wearing process under elevated temperature.  相似文献   

16.
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating.  相似文献   

17.
Catalytic decomposition of methylene chloride in air below 300℃ was studied. Sulfated tiaznia was very effective in converting 959ppm methylene chloride selectively to CO, CO2 and HCl. Complete decomposi-tion of methylene chloride was achieved at low temperature( 275℃ ). It was found that the acidic property of cata-lyst was a determinaat factor for the catalytic activity. The presence of water vapor in the feed stream remarkably reduced the catalytic activity, which could be due to the blockage of acidic sites on the surface of catalyst by water molecules. A bifunctional catalyst comprising copper oxide was developed to improve the selectivity of catalytic oxi-thrtion , which indicated that copper oxide can promote the deep oxidation of methylene chloride. The crystal form of TiO2 imposes an important influence upon the catalytic oxidation.  相似文献   

18.
The nozzle clogging behavior of Ti-bearing IF steel was studied by metallographic analysis,scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS),and X-ray diffraction(XRD).According to the experimental results,nozzle clogging primarily appears three layers.There are a lot of large-sized iron particles in the inner layer and mainly slag phase in the middle and outer layers.The principal clog constituents of the inner layer are loose alumina cluster inclusions and granular shaped alumina i...  相似文献   

19.
Nanoporous copper oxides were formed by thermal oxidation of nanoporous copper at 150°C–270°C. The oxidation process of nanoporous copper was investigated by using XRD, SEM, nitrogen adsorption, HRTEM and nanoindentation. The variation of microstructures and mechanical properties was analyzed. The results showed that the content of copper oxides increased, the ligament gradually coarsened, and the mechanical properties of nanoporous structure were improved with the increase of oxidation temperature. When the oxidation temperature was below 210°C, the ligament surface was oxidized to Cu_2O, and the composite structure of Cu_2O@Cu was formed. The formation of CuO occurred since 220°C, and the composite structure of CuO/Cu_2 O@Cu was formed. CuO nanowires were grown on the ligament surface at 250°C; the specific surface area, elastic modulus and hardness of nanoporous structure are 1.37, 3.31 and 7.58 times that of the nanoporous copper, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号