首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerosol gene therapy   总被引:9,自引:0,他引:9  
Gene therapy is a novel field of medicine that holds tremendous therapeutic potential for a variety of human diseases. Targeting of therapeutic gene delivery vectors to the lungs can be beneficial for treatment of various pulmonary diseases such as lung cancer, cystic fibrosis, pulmonary hypertension, alpha-1 antitrypsin deficiency, and asthma. Inhalation therapy using formulations delivered as aerosols targets the lungs through the pulmonary airways. The instant access and the high ratio of the drug deposited within the lungs noninvasively are the major advantages of aerosol delivery over other routes of administration. Delivery of gene formulations via aerosols is a relatively new field, which is less than a decade old. However, in this short period of time significant developments in aerosol delivery systems and vectors have resulted in major advances toward potential applications for various pulmonary diseases. This article will review these advances and the potential future applications of aerosol gene therapy technology.  相似文献   

2.
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody–siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.  相似文献   

3.
Pancreatic cancer remains the fourth leading cause of cancer-related death in the US and is expected to be the second leading cause of cancer-related death by 2030. Therefore, it is important to better understand the molecular pathogenesis, phenotypes and features of pancreatic cancer in order to design novel molecularly targeted therapies for achieving better therapeutic outcome of patients with pancreatic cancer. Recently, the roles of microRNAs (miRNAs) in the development and progression of pancreatic cancer became a hot topic in the scientific community of pancreatic cancer research. By conducting miRNA expression profiling, the aberrant expression of miRNAs was revealed in the serum and in cancer tissues from patients with pancreatic cancer. These aberrantly expressed miRNAs are critically correlated with the disease stage, drug resistance, and survival of pancreatic cancer patients. Hence, targeting these tiny molecules, the specific miRNAs, could provide an efficient and optimal approach in the therapy of pancreatic cancer. Indeed, the pre-clinical and in vivo experiments showed that nanoparticle delivery of synthetic oligonucleotides or treatment with natural agents could be useful to modulate the expression of miRNAs and thereby inhibit pancreatic cancer growth and progression, suggesting that targeting miRNAs combined with conventional anti-cancer therapeutics could be a novel therapeutic strategy for increasing drug sensitivity and achieving better therapeutic outcome of patients diagnosed with pancreatic cancer.  相似文献   

4.
Exosomes denote a class of secreted nanoparticles defined by size, surface protein and lipid composition, and the ability to carry RNA and proteins. They are important mediators of intercellular communication and regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest them to be important both for diagnostic and therapeutic purposes, prompting the idea of using exosomes as drug delivery vehicles, especially for gene therapy. This review covers the current status of evidence presented in the field of exosome-based drug delivery systems. Components for successful exosome-based drug delivery, such as choice of donor cell, therapeutic cargo, use of targeting peptide, loading method and administration route are highlighted and discussed with a general focus pertaining to the results obtained in models of different cancer types. In addition, completed and on-going clinical trials are described, evaluating exosome-based therapies for the treatment of different cancer types. Due to their endogenous origin, exosome-based drug delivery systems may have advantages in the treatment of cancer, but their design needs further refinement to justify their usage on the clinical scale.  相似文献   

5.
量子点是一种半导体纳米晶体,它可发出激发荧光,具有亮度高、稳定时间长和发射光谱可调节等特性,是同时检测多信号的良好材料.这些独特性质使得它们在肿瘤诊治领域中的应用日益受到人们的重视.对量子点进行功能化修饰,如偶联抗体等活性物质后,可以对肿瘤细胞进行特异性识别及示踪,以实现对肿瘤的诊断和治疗.文中分别从分子靶向识别、淋巴结定位和药物传递等方面探讨了功能化量子点在肿瘤诊断和治疗中的最新进展.此外,还讨论了量子点的毒性以及用于肿瘤检测和治疗的多功能量子点的设计方法,并提出了其实际应用的潜在方向.  相似文献   

6.
Nanotechnology has enabled the development of novel therapeutic and diagnostic strategies, such as advances in targeted drug delivery systems, versatile molecular imaging modalities, stimulus responsive components for fabrication, and potential theranostic agents in cancer therapy. Nanoparticle modifications such as conjugation with polyethylene glycol have been used to increase the duration of nanoparticles in blood circulation and reduce renal clearance rates. Such modifications to nanoparticle fabrication are the initial steps toward clinical translation of nanoparticles. Additionally, the development of targeted drug delivery systems has substantially contributed to the therapeutic efficacy of anti-cancer drugs and cancer gene therapies compared with nontargeted conventional delivery systems. Although multifunctional nanoparticles offer numerous advantages, their complex nature imparts challenges in reproducibility and concerns of toxicity. A thorough understanding of the biological behavior of nanoparticle systems is strongly warranted prior to testing such systems in a clinical setting. Translation of novel nanodrug delivery systems from the bench to the bedside will require a collective approach. The present review focuses on recent research efforts citing relevant examples of advanced nanodrug delivery and imaging systems developed for cancer therapy. Additionally, this review highlights the newest technologies such as microfluidics and biomimetics that can aid in the development and speedy translation of nanodrug delivery systems to the clinic.  相似文献   

7.
In the scientific field, nanotechnology has offered multipurpose and designated functional nanoparticles (NPs) for the development of applications in nano-medicine. This present review focuses on cutting edge of nanotechnology in biomedical applications as drug carries in cancer treatment. The nanotechnology overcomes several limitations of drug delivery systems used in distinct therapeutic approaches of cancer treatment. The serious effect of conventional chemotherapeutics by nonspecific targeting, the lack of solubility, and the inability of chemotherapeutics entry to cancer cells which, offers a great opportunity for nanotechnology to play significant roles in cancer biology. The selective delivery of nano-drugs to the targeted cancer cells by the programmed way and avoiding nonspecific interactions to the healthy cells. The present review focuses on the methods of improving the size, shape and characteristics of nanomaterials which can be exploited for cancer therapy. The successful designing of nanocarriers can be tailored for cancer treatment for upcoming future as nano-medicines.  相似文献   

8.
pH-responsive nanoparticles (NPs) are currently under intense development as drug delivery systems for cancer therapy. Among various pH-responsiveness, NPs that are designed to target slightly acidic extracellular pH environment (pHe) of solid tumors provide a new paradigm of tumor targeted drug delivery. Compared to conventional specific surface targeting approaches, the pHe-targeting strategy is considered to be more general due to the common occurrence of acidic microenvironment in solid tumors. This review mainly focuses on the design and applications of pHe-activated NPs, with special emphasis on pHe-activated surface charge reversal NPs, for drug and siRNA delivery to tumors. The novel development of NPs described here offers great potential for achieving better therapeutic effects in cancer treatment.  相似文献   

9.
复杂的肿瘤微环境导致抗肿瘤药物在肿瘤组织内递送效率低下,严重阻碍了药物对浅表肿瘤的治疗效果。生物相容透皮给药微针凭借较高的机械强度,刺穿皮肤角质层,将微针内的药物递送至浅表肿瘤组织内,提高生物利用度,改善静脉注射、口服给药的肝肾毒性等问题。本文介绍了生物相容透皮给药微针的设计及其在癌症化疗、光动力治疗、光热治疗、免疫治疗、基因治疗等领域的研究进展,对浅表肿瘤的微创、局部递药和精准、高效治疗具有重要指导意义。  相似文献   

10.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   

11.
Epigenetic events are critical contributors to the pathogenesis of cancer, and targeting epigenetic mechanisms represents a novel strategy in anticancer therapy. Classic demethylating agents, such as 5-Aza-2′-deoxycytidine (Decitabine), hold the potential for reprograming somatic cancer cells demonstrating high therapeutic efficacy in haematological malignancies. On the other hand, epigenetic treatment of solid tumours often gives rise to undesired cytotoxic side effects. Appropriate delivery systems able to enrich Decitabine at the site of action and improve its bioavailability would reduce the incidence of toxicity on healthy tissues. In this work we provide preclinical evidences of a safe, versatile and efficient targeted epigenetic therapy to treat hormone sensitive (LNCap) and hormone refractory (DU145) prostate cancers. A novel Decitabine formulation, based on the use of engineered erythrocyte (Erythro-Magneto-Hemagglutinin Virosomes, EMHVs) drug delivery system (DDS) carrying this drug, has been refined. Inside the EMHVs, the drug was shielded from the environment and phosphorylated in its active form. The novel magnetic EMHV DDS, endowed with fusogenic protein, improved the stability of the carried drug and exhibited a high efficiency in confining its delivery at the site of action in vivo by applying an external static magnetic field. Here we show that Decitabine loaded into EMHVs induces a significant tumour mass reduction in prostate cancer xenograft models at a concentration, which is seven hundred times lower than the therapeutic dose, suggesting an improved pharmacokinetics/pharmacodynamics of drug. These results are relevant for and discussed in light of developing personalised autologous therapies and innovative clinical approach for the treatment of solid tumours.  相似文献   

12.
With ever-increasing molecular information about colorectal cancer (CRC), there is an expectation to detect more sensitive and specific molecular markers for new advanced diagnostic methods that can surpass the limitations of current screening tests. Moreover, enhanced molecular pathology knowledge about cancer has led to the development of targeted therapies, designed to interfere with specific aberrant biological pathways in cancer. Furthermore, biotechnology has opened a new window in CRC diagnosis and treatment by introducing different application of antibodies, antibody fragments, non-Ig scaffold proteins, and aptamers in targeted therapy and drug delivery. This review summarizes the molecular diagnostic and therapeutic approaches in CRC with a focus on genetic and epigenetic alterations, protein and metabolite markers as well as targeted therapy and drug delivery by Ig-scaffold proteins, non-Ig scaffold proteins, nanobodies, and aptamers.  相似文献   

13.
The incidence of pancreatic adenocarcinoma is increasing with more than 43,000 predicted new cases in the US and 65,000 in Europe this year. Pancreatic cancer patients have a short life expectancy with less than 3–4% 5-y survival, which results in an equivalent incidence and mortality rate. One of the major challenges in pancreatic cancer is the identification of pharmacological approaches that overcome the resistance of this cancer to therapy. Intensive research in the past decades has led to the classification of pancreatic cancers and the identification of the driver key genetic events. Despite the advances in understanding the molecular mechanisms responsible for pancreatic cancer pathogenesis, this knowledge had little impact on significantly improving the treatment for this dismal disease. In particular, we know today that the lack of therapeutic response in pancreatic cancer is due to the intrinsic high resistance of these tumors to chemotherapy and radiation, rather than to the inappropriate design of these therapeutic approaches. Thus, in order to ensure a better outcome for pancreatic cancer patients, there is a strong need for research focused on the mechanism that determines this resistant phenotype and the means that might drive enhanced response to therapy.  相似文献   

14.
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.  相似文献   

15.
During the past years, great progress has been made in the field of nanomaterials given their great potential in biomedical applications. Carbon nanotubes (CNTs), due to their unique physicochemical properties, have become a popular tool in cancer diagnosis and therapy. They are considered one of the most promising nanomaterials with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to these cells. Over the last several years, CNTs have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy. In this review, we will show how they have been introduced into the diagnosis and treatment of cancer. Novel SWNT-based tumor-targeted drug delivery systems (DDS) will be highlighted. Furthermore, the in vitro and in vivo toxicity of CNTs reported in recent years will be summarized.  相似文献   

16.
Although approved for the treatment of pancreatic cancer, the chemotherapeutic agent ifosfamide is not an effective therapy for this type of tumour. Ifosfamide must be activated by cytochrome P450 (P450) enzymes in the liver, initially to a short lived intermediate and then to toxic metabolites that are subsequently distributed by the circulatory system. Particularly for pancreatic cancer, this liver-mediated conversion results in relatively high systemic toxicities and poor therapeutic concentrations at the liver-distant site of the tumour. Activation of ifosfamide at the site of the tumour may allow lower doses to be used, while increasing the therapeutic index due to the resultant active concentrations generated locally. A cell-based therapy has been conceived where encapsulated, 293-derived cells genetically modified to overexpress a cytochrome P450 enzyme, are implanted near solid tumours. The cells are encapsulated in polymers of cellulose sulphate in order to provide a means of immunoprotection in vivo as well as to physically constrain them to the vicinity of the tumour. A major advantage of this strategy is that it allows one standard cell line to be applied to all patients and this approach can be extended to the treatment of other tumour types. After proof of principle studies in animal models, a phase I/II clinical trial was initiated in patients with stage III/IV nonresectable pancreatic cancer. Encapsulated cells were angiographically placed into the tumour vasculature of 14 patients and followed by systemic low dose ifosfamide treatment. Angiographic delivery of encapsulated cells proved feasible in all but one patient, and was well tolerated with no capsule or ifosfamide treatment-related adverse events. Four of the treated patients showed tumour regressions after capsule delivery and ifosfamide treatment in computer-tomography scans. The other 10 patients showed no further tumour growth (i.e. stable disease) during 20 weeks observation period. The median life expectancy of the patient collective was extended two fold as compared to age and status matched historical controls, with a 3-fold improvement in one year survival being attained. Evidence for a clinical benefit of the treatment was also obtained on the basis of standard parameters for quality of life. This approach has been evaluated by the European Medicines Evaluation Agency (EMEA) and orphan drug status has been granted. A pivotal clinical trial is now being planned with the help of the EMEA. Taken together, the data from this clinical trial suggest that encapsulated cytochrome P450-expressing cells combined with chemotherapy may be useful for the local treatment of a number of solid tumours and support the performance of further clinical studies of this new treatment.  相似文献   

17.
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer.  相似文献   

18.
Phospholipid micelles have proven to be the versatile pharmaceutical nanocarrier of choice for the delivery of poorly soluble chemotherapeutics for cancer therapy using various treatment modalities. Phospholipid micelles are typically expected to increase the accumulation of the loaded drugs in tumour tissues by taking advantage of the enhanced permeability and retention effect and by ligand-mediated active targeting. Furthermore, by tailoring the composition of the micelles, it is possible to enhance the intracellular delivery of the cargo. This review highlights the important advancements in our laboratory with polyethyleneglycol phosphatidylethanolamine (PEG-PE)-based micellar drug delivery systems for improvement of the therapeutic efficacy of poorly soluble anticancer drugs.  相似文献   

19.
Cytotoxic chemotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can they be selectively improved? Alternative pharmaceutical formulations of anti-cancer agents have been investigated in order to improve conventional chemotherapy treatment. These formulations are associated with problems like severe toxic side effects on healthy organs, drug resistance and limited access of the drug to the tumor sites suggested the need to focus on site-specific controlled drug delivery systems. In response to these concerns, we have developed a new drug delivery system based on magnetic erythrocytes engineered with a viral spike fusion protein. This new erythrocyte-based drug delivery system has the potential for magnetic-controlled site-specific localization and highly efficient fusion capability with the targeted cells. Here we show that the erythro-magneto-HA virosomes drug delivery system is able to attach and fuse with the target cells and to efficiently release therapeutic compounds inside the cells. The efficacy of the anti-cancer drug employed is increased and the dose required is 10 time less than that needed with conventional therapy.  相似文献   

20.
外泌体(exosomes)是细胞分泌的囊泡,在细胞与细胞之间通信中发挥重要作用。由于其固有的长距离通信能力和出色的生物相容性而具有很大的潜力作为药物递送载体,尤其适合递送蛋白质、核酸、基因治疗剂等治疗药物。许多研究表明外泌体可以有效地将许多不同种类的货物递送至靶细胞,因此,它们常被作为药物载体用于治疗。对外泌体作为药物递送系统中面临的外泌体分离,药物装载和靶向治疗应用的进展与挑战作一介绍,以期更好为外泌体药物递送系统开发提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号