首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Symmetric cells of the configuration air/LSM//YSZ//LSM/air have been fabricated and electrically tested under impressed voltage conditions to understand the anode delamination behavior commonly observed during the operation of solid oxide electrolysis cells (SOEC). Electrical performance degradation has been measured with time at various applied voltages ranging from 0 to 0.8 V with respect to OCV, and cell component microstructural and chemical changes have been examined. Post-test observations indicate the development of a weak anode–electrolyte interface leading to the delamination of the anode from the electrolyte surface. Microstructural analysis of the anode–electrolyte interface revealed extensive morphological and chemical changes including the formation of lanthanum zirconate, an uneven porous interface, and localized grain boundary porosity in the electrolyte. An anode delamination mechanism based on morphological change and compound formation at the anode–electrolyte interface is proposed.  相似文献   

2.
Various Ni–LaxCe1−xOy composites were synthesized and their catalytic activity, catalytic stability and carbon deposition properties for steam reforming of methane were investigated. Among the catalysts, Ni–La0.1Ce0.9Oy showed the highest catalytic performance and also the best coking resistance. The Ni–LaxCe1−xOy catalysts with a higher Ni content were further sintered at 1400 °C and investigated as anodes of solid oxide fuel cells for operating on methane fuel. The Ni–La0.1Ce0.9Oy anode presented the best catalytic activity and coking resistance in the various Ni–LaxCe1−xOy catalysts with different ceria contents. In addition, the Ni–La0.1Ce0.9Oy also showed improved coking resistance over a Ni–SDC cermet anode due to its improved surface acidity. A fuel cell with a Ni–La0.1Ce0.9Oy anode and a catalyst yielded a peak power density of 850 mW cm−2 at 650 °C while operating on a CH4–H2O gas mixture, which was only slightly lower than that obtained while operating on hydrogen fuel. No obvious carbon deposition or nickel aggregation was observed on the Ni–La0.1Ce0.9Oy anode after the operation on methane. Such remarkable performances suggest that nickel and La-doped CeO2 composites are attractive anodes for direct hydrocarbon SOFCs and might also be used as catalysts for the steam reforming of hydrocarbons.  相似文献   

3.
Co-rich and crack-free Mn–Co oxide coatings were deposited on AISI 430 substrates by anodic electrodeposition from aqueous solutions. The as-deposited Mn–Co oxide coatings, with nano-scale fibrous morphology and a metastable rock salt-type structure, evolved into a (Cr,Mn,Co)3O4 spinel layer due to the outward diffusion of Cr from the AISI 430 substrates when pretreated in air. The Mn–Co oxide coatings were reduced into metallic Co and Mn3O4 phases when annealed in a reducing atmosphere of 5% H2–95% N2. In contrast to the degraded oxidation resistance and electrical properties observed for the air-pretreated Mn–Co oxide coated samples, the H2-pretreated Mn–Co oxide coatings not only acted as a protective barrier to reduce the Cr outward diffusion, but also improved the electrical performance of the steel interconnects. The improvement in electronic conductivity can be ascribed to the higher electronic conductivity of the Co-rich spinel layer and better adhesion of the scale to the steel substrate, thereby eliminating scale spallation.  相似文献   

4.
High performance solid oxide fuel cells (SOFCs) based on gadolinia-doped ceria (GDC) electrolyte are demonstrated for intermediate temperature operation. The inherent technical limitations of the GDC electrolyte in sinterability and mechanical properties are overcome by applying sol–gel coating technique to the screen-printed film. When the quality of the electrolyte film is enhanced by the additional sol–gel coating, the OCV and maximum power density increase from 0.73 to 0.90 V and from 0.55 to 0.95 W cm−2, respectively, at 650 °C with humidified hydrogen (3% H2O) as fuel and air as oxidant. The impedance analysis reveals that the reinforcement of the thin electrolyte with sol–gel coating significantly reduces the polarization resistance. Elementary reaction steps for the anode and cathode are analyzed based on the systematic impedance study, and the relation between the structural integrity of the electrolyte and the electrode polarization is discussed in detail.  相似文献   

5.
Landfill gas in Hong Kong – a mixture of about 50% (by volume) CH4 and 50% CO2 – can be utilized for power generation in a solid oxide fuel cell (SOFC). Conventional way of utilizing CH4 in a SOFC is by adding H2O to CH4 to initiate methane steam reforming (MSR) and water gas shift reaction (WGSR). As the methane carbon dioxide reforming (MCDR: CH4 + CO2 ↔ 2CO + 2H2) is feasible in the SOFC anode, it is unknown whether H2O is needed or not for landfill gas fueled SOFC. In this study, a numerical model is developed to investigate the characteristics of SOFC running on landfill gas. Parametric simulations show that H2O addition may decrease the performance of short SOFC at typical operating conditions as H2O dilute the fuel concentration. However, it is interesting to find that H2O addition is needed at reduced operating temperature, lower operating potential, or in SOFC with longer gas channel, mainly due to less temperature reduction in the downstream and easier oxidation of H2 than CO. This preliminary study could help identify strategies for converting landfill gas into electrical power in Hong Kong.  相似文献   

6.
《Journal of power sources》2002,105(2):222-227
A general thermodynamic model has shown that combined fuel cell cycles may reach an electric-efficiency of more than 80%. This value is one of the targets of the Department of Energy (DOE) solid oxide fuel cell–gas turbine (SOFC–GT) program. The combination of a SOFC and GT connects the air flow of the heat engine and the cell cooling. The principle strategy in order to reach high electrical-efficiencies is to avoid a high excess air for the cell cooling and heat losses. Simple combined SOFC–GT cycles show an efficiency between 60 and 72%. The combination of the SOFC and the GT can be done by using an external cooling or by dividing the stack into multiple sub-stacks with a GT behind each sub-stack as the necessary heat sink. The heat exchangers (HEXs) of a system with an external cooling have the benefit of a pressurization on both sides and therefore, have a high heat exchange coefficient. The pressurization on both sides delivers a low stress to the HEX material. The combination of both principles leads to a reheat (RH)-SOFC–GT cycle that can be improved by a steam turbine (ST) cycle. The first results of a study of such a RH-SOFC–GT–ST cycle indicate that a cycle design with an efficiency of more than 80% is possible and confirm the predictions by the theoretical thermodynamic model mentioned above. The extremely short heat-up time of a thin tubular SOFC and the market entrance of the micro-turbines give the option of using these SOFC–GT designs for mobile applications. The possible use of hydrocarbons such as diesel oil is an important benefit of the SOFC. The micro-turbine and the SOFC stack will be matched depending on the start-up requirements of the mobile system. The minimization of the volume needed is a key issue. The efficiency of small GTs is lower than the efficiency of large GTs due to the influence of the leakage within the stages of GTs increasing with a decreasing size of the GT. Thus, the SOFC module pressure must be lower than in larger stationary SOFC–GT systems. This leads to an electrical-efficiency of 45% of a cycle used as a basis for a design study. The result of the design study is that the space available in a mid-class car allows the placement of such a system, including space reserves. A further improvement of the system might allow an electrical-efficiency of about 55%.  相似文献   

7.
Intermediate temperature solid oxide fuel cells (IT-SOFCs) using chromia-forming alloy interconnect requires the development of cathode not only with high electrochemical activity but also with the high resistance or tolerance towards Cr deposition and poisoning. This is due to the fact that, at SOFC operating temperatures, volatile Cr species are generated over the chromia scale, poisoning the cathodes such as (La,Sr)MnO3 (LSM) and (La,Sr)(Co,Fe)O3 (LSCF) and causing a rapid degradation of the cell performance. Thus, a fundamental understanding of the interaction between the Fe–Cr alloys and SOFC cathode is essential for the development of high performance and stable SOFCs. The objective of this paper is to critically review the progress and particularly the work done in the last 10 years in this important area. The mechanism and kinetics of the Cr deposition and Cr poisoning process on the cathodes of SOFCs are discussed. Chromium deposition at SOFC cathodes is most likely dominated by the chemical reduction of high valence Cr species, facilitated by the nucleation agents on the electrode and electrolyte surface and/or at the electrode/electrolyte interface, i.e., the nucleation theory. The driving force behind the nucleation theory is the surface segregation and migration of cationic species on the surface of perovskite oxide cathodes. Overwhelming evidences indicate that the surface segregation plays a critical role in the Cr deposition. The prospect of the development in the Cr-tolerant cathodes for SOFCs is presented.  相似文献   

8.
Reversible solid oxide cells (RSOCs) are prone to material thermal property mismatching problems between electrodes and electrolyte, which greatly reduces their energy efficiency and causes irreversible performance degradation. One solution is to develop symmetrical RSOCs (SRSOCs) employing identical electrode materials to effectively address thermal property mismatching related issues and also simplify the manufacturing process. Herein, La1-xSrxFeO3-δ (x = 0–0.20) perovskites are developed and applied as both fuel and air electrode materials for SRSOCs for the first time. The impact of Sr substitution for La on the crystal structures, conductivities and electrochemical performance of LaFeO3 oxides is systematically investigated. It is found, after doping with Sr, overall properties of the LaFeO3 oxides show an obvious improvement, especially for the sample of La0·9Sr0·1FeO3-δ (LSF9010). The peak power density of SRSOCs featuring LSF9010 can stand at 0.575 W cm−2 at 800 °C under the solid oxide fuel cell (SOFC) working model. Under solid oxide electrolysis cell (SOEC) model, the current density stands at 0.84 A cm−2 at 800 °C and 1.5 V. More importantly, the La0·9Sr0·1FeO3-δ symmetrical cell can operate steadily for 128 h under SOFC mode and 25 h under SOFC-SOEC cycle mode, respectively, with almost no performance degradation found. The outcomes of the current study show that the developed LSF9010 may be used as an outstanding multifunctional electrode material in SRSOCs.  相似文献   

9.
Abstract

A reversible solid oxide fuel cell system can act as an energy storage device by storing energy in the form of hydrogen and heat, buffering intermittent supplies of renewable electricity such as tidal and wave generation. The most widely used electrodes for the cell are lanthanum strontium manganate–yttria stabilised zirconia and Ni–yttria stabilised zirconia. Their microstructure depends on the fabrication techniques, and determines their performance. The concept and efficiency of reversible solid oxide fuel cells are explained, along with cell geometry and microstructure. Electrode fabrication techniques such as screen printing, dip coating and extrusion are compared according to their advantages and disadvantages, and fuel cell system commercialisation is discussed. Modern techniques used to evaluate microstructure such as three-dimensional computer reconstruction from dual beam focused ion beam–scanning electron microscopy or X-ray computed tomography, and computer modelling are compared. Reversible cell electrode performance is measured using alternating current impedance on symmetrical and three electrode cells, and current/voltage curves on whole cells. Fuel cells and electrolysis cells have been studied extensively, but more work needs to be done to achieve a high performance, durable reversible cell and commercialise a system.  相似文献   

10.
Anode-supported solid oxide fuel cells (SOFC) comprising nickel + iron anode support and gadolinia-doped ceria (GDC) of composition Gd0.1Ce0.9O2−δ thin film electrolyte were fabricated, and their performance was evaluated. The ratio of Fe2O3 to NiO in the anode support was 3 to 7 on a molar basis. Fe2O3 and NiO powders were mixed in the desired proportions and discs were die-pressed. All other layers were sequentially applied on the anode support. The cell structure consisted of five distinct layers: anode support – Ni + Fe; anode functional layer – Ni + GDC; electrolyte – GDC; cathode functional layer – LSC (La0.6Sr0.4CoO3−δ) + GDC; and cathode current collector – LSC. Cells with three different variations of the electrolyte were made: (1) thin GDC electrolyte (∼15 μm); (2) thick GDC electrolyte (∼25 μm); and (3) tri-layer GDC/thin yttria-stabilized zirconia (YSZ)/GDC electrolyte (∼25 μm). Cells were tested with hydrogen as fuel and air as oxidant up to 650 °C. The maximum open circuit voltage measured at 650 °C was ∼0.83 V and maximum power density measured was ∼0.68 W cm−2. The present work shows that cells with Fe + Ni containing anode support can be successfully made.  相似文献   

11.
This paper compares the performance characteristics of a combined power system with solid oxide fuel cell (SOFC) and gas turbine (GT) working under two thermodynamic optimization strategies. Expressions of the optimized power output and efficiency for both the subsystems and the SOFC-GT hybrid cycle are derived. Optimal performance characteristics are discussed and compared in detail through a parametric analysis to evaluate the impact of multi-irreversibilities that take into account on the system behaviour. It is found that there exist certain new optimum criteria for some important design and operating parameters. Engineers should find the methodologies developed in this paper useful in the optimal design and practical operation of complex hybrid fuel cell power plants.  相似文献   

12.
The electrolyte material Ce0.85Sm0.15O1.92 (SDC) powders are synthesized by glycine–nitrate processes and BaCe0.83Y0.17O3−δ (BCY) powders are synthesized by sol–gel processes, respectively. Then SDC–BCY composite electrolytes are prepared by mixing SDC and BCY. The SDC and BCY powders are mixed in the weight ratio of 95:5, 90:10 and 85:15 and named as SB95, SB90 and SB85, respectively. The electrical properties of SDC and SDC–BCY composites are investigated. The experimental results show that SDC–BCY composites exhibit the excellent conductivity and could significantly enhance the fuel cell performances. The behavior that SDC–BCY composites display hybrid proton and oxygen ion conduction is substantiated. Among these electrolytes, the maximum power density reaches as high as 159 mW cm−2 for the fuel cell based on SB90 composite electrolyte at 600 °C.  相似文献   

13.
A series of barium aluminosilicate glasses modified with CaO and B2O3 were prepared and evaluated with respect to their suitability in sealing planar solid oxide fuel cells (SOFCs). At a target operating temperature of 750 °C, the long-term coefficient of thermal expansion (CTE) of one particular composition (35 mol% BaO, 15 mol% CaO, 10 mol% B2O3, 5 mol% Al2O3, and bal. SiO2) was found to be particularly stable, due to devitrification to a mixture of glass and ceramic phases. This sealant composition exhibits minimal chemical interaction with the yttria-stabilized zirconia electrolyte, yet forms a strong bond with this material. Interactions with metal components were found to be more extensive and depended on the composition of the metal oxide scale that formed during sealing. Generally alumina-scale formers exhibited a more compact reaction zone with the glass than chromia-scale forming alloys. Mechanical measurements conducted on the bulk glass–ceramic and on seals formed using these materials indicate that the sealant is anticipated to display adequate long-term strength for most conventional stationary SOFC applications.  相似文献   

14.
A-site cation-ordered perovskite oxide LaBaCo2O5+δ (LBCO) was synthesized and evaluated as a cathode material of intermediate-temperature solid oxide fuel cells (IT-SOFCs). LBCO was structurally stable when calcined at 850 °C in air but transformed into cation-disordered structure at 1050 °C. LBCO showed chemical compatibility with Gd0.1Ce0.9O1.95 (GDC) electrolyte at 850 °C and 1000 °C in air. Conductivity of LBCO firstly increased slightly with higher temperature to a maximum of 470 S cm−1 at ∼250 °C and then decreased gradually with further increase in temperature. Electrochemical impedance spectra of the LBCO/GDC/LBCO symmetric cell were measured, and electrode reaction mechanism for the LBCO cathode was analyzed. The electrode polarization resistance of LBCO was mainly contributed by oxygen ionic transfer across the cathode/electrolyte interface and oxygen atom diffusion-electronic charge transfer process. Low area-specific resistances with values ranging from 0.15 Ω cm2 at 650 °C to 0.0086 Ω cm2 at 800 °C were obtained. These results have demonstrated that the A-site cation-ordered perovskite oxide LBCO is a promising cathode material for IT-SOFCs.  相似文献   

15.
A composite of a perovskite oxide proton conductor (BaCe0.7Zr0.1Y0.2O3−δ, BCZ10Y20) and alkali carbonates (2Li2CO3:1Na2CO3, LNC) is investigated with respect to its morphology, conductivity and fuel cell performance. The morphology shows that the presence of carbonate phase improves the densification of oxide matrix. The conductivity is measured by AC impedance in air, nitrogen, wet nitrogen, hydrogen, and wet hydrogen, respectively. A sharp increase of the conductivity at certain temperature is seen, which relates to the superionic phase transition at the interface phases between oxide and carbonates. Single cell with the composite electrolyte is fabricated by dry-pressing technique, using nickel oxide as anode and lithiated nickel oxide as cathode, respectively. The cell shows a maximum power density of 957 mW cm−2 at 600 °C with hydrogen as the fuel and oxygen as the oxidant. The remarkable proton conductivity and excellent cell performance make this kind of composite material a good candidate electrolyte for low temperature solid oxide fuel cells (SOFCs).  相似文献   

16.
La-doped SrTiO3 (LST)–xCeO2 (x = 0, 30, 40, 50) composites were evaluated as anode materials for solid oxide fuel cells in terms of chemical compatibility, electrical conductivity and fuel cell performance in H2 and CH4. Although the conductivity of LST–xCeO2 composite slightly decreased from 4.6 to 3.9 S cm−1 in H2 at 900 °C as the content of CeO2 increased, the fuel cell performance improved from 75.8 to 172.3 mW cm−2 in H2 and 54.5 to 139.6 mW cm−2 in CH4 at 900 °C. Electrochemical impedance spectra (EIS) indicated that the addition of CeO2 into LST can significantly reduce the fuel cells polarization thus leading to a higher performance. The result demonstrated the potential ability of LST–xCeO2 to be used as SOFCs anode.  相似文献   

17.
Coal-fueled direct carbon solid oxide fuel cell (DC-SOFC) is a very attractive electrochemical conversion device. However, coal contains a certain amount of ash, such as Al, Si, S, etc., which are toxicants for SOFC components. To solve the above problem, anthracite is pyrolyzed at 600 °C to obtain semi-coking coal results in better cell performance. The results show that the higher carbon gasification oxidation activity of semi-coking coal is due to the higher amount of fixed carbon and catalyst. Therefore, more fuel gas (CO) is available in the anode chamber for the Boudouard reaction. Also, the electrochemical performance of both coals as DC-SOFC fuel was compared using La0·4Sr0·6Co0·2Fe0·7Nb0·1O3-δ (LSCFN) as anode. The maximum power density (MPD) of the DC-SOFC with semi-coking coal is 596 mW cm−2 at 850 °C, much higher than that of the SOFC using anthracite (396 mW cm−2) as the fuel. Furthermore, at the same fuel content, the cell fueled with semi-coking coal has a longer discharge time (30 h), which shows a better stability.  相似文献   

18.
Solid oxide fuel cell (SOFC) is a complicated system with heat and mass transfer as well as electrochemical reactions. The real-time dynamic simulation of SOFC is still a challenge up to now. This paper develops a one-dimensional mathematical model for direct internal reforming solid oxide fuel cell (DIR-SOFC). The volume–resistance (VR) characteristic modeling technique is introduced into the modeling of the SOFC system. Based on the VR modeling technique and the modular modeling idea, ordinary differential equations meeting the quick simulation are obtained from partial differential equations. This model takes into account the variation of local gas properties. It can not only reflect the distributed parameter characteristics of SOFC, but also meet the requirement of the real-time dynamic simulation. The results indicate that the VR characteristic modeling technique is valuable and viable in the SOFC system, and the model can be used in the quick dynamic and real-time simulation.  相似文献   

19.
A general electrode–electrolyte-assembly (EEA) model has been developed, which is valid for different designs of solid oxide fuel cells (SOFCs) operating at different temperatures. In this study, it is applied to analyze the performance characteristics of planar anode-supported SOFCs. One of the novel features of the present model is its treatment of electrodes. An electrode in the present model is composed of two distinct layers referred to as the backing layer and the reaction zone layer. The other important feature of the present model is its flexibility in fuel, having taking into account the reforming and water–gas shift reactions in the anode. The coupled governing equations of species, charge and energy along with the constitutive equations in different layers of the cell are solved using finite volume method. The model can predict all forms of overpotentials and the predicted concentration overpotential is validated with measured data available in literature. It is found that in an anode-supported SOFC, the cathode overpotential is still the largest cell potential loss mechanism, followed by the anode overpotential at low current densities; however, the anode overpotential becomes dominant at high current densities. The cathode and electrolyte overpotentials are not negligible even though their thicknesses are negligible relative to the anode thickness. Even at low fuel utilizations, the anode concentration overpotential becomes significant when chemical reactions (reforming and water–gas shift) in the anode are not considered. A parametric study has also been carried out to examine the effect of various key operating and design parameters on the performance of an anode-supported planar SOFCs.  相似文献   

20.
A novel composite oxide Ce(Mn,Fe)O2-La(Sr)Fe(Mn)O3 (CFM-LSFM) was synthesized and evaluated as both anode and cathode materials for solid oxide fuel cells. The cell with CFM-LSFM electrodes was fabricated by tape-casting and screen printing technique. The power-generating performance of this cell was comparable to that of the cell with Ni-SSZ anode and LSM-SSZ cathode. During the 120 h long-term test in hydrogen at 800 °C, the performance increased by 8.6% from 256 to 278 mW cm−2. This was attributed to the decrease of polarization resistance and ohmic resistance during the test. The XRD results showed the presence of Fe, MnO and some unknown second phases after heat-treating the electrode materials in H2 which may be beneficial to the anode electrochemical process. The gradual decrease of polarization resistance as increasing the current density possibly resulted from the increasing content of water in the anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号