首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It is well-known that chip-on-glass (COG) assembly is often subjected to the coupled effects of temperature, electrical current and cyclic mechanical loading in service. Therefore, the fatigue life and electrical property of COG assembly undergoing thermal–electric–mechanical coupled loads have been studied in the present work. Based on the present investigations, it was found that that the relative resistance of COG assembly in the fatigue process displayed different trends according to environmental temperature and mechanical loading amplitude. Moreover, the fatigue life of the COG assembly decreased with the increased temperature and the increased loading amplitude. Finally, the Basquin's equation can predict the fatigue life of COG assembly at different environmental temperatures well.  相似文献   

2.
This paper reports the adhesion and electrical properties of chip-on-glass (COG) assembly undergoing the coupling loads of temperature, electric current and stress (hygrothermal stress or thermal stress). Firstly, the effects of loading rate and coupling loads on the adhesive force of COG assembly were studied by shear test. The maximum shear force of COG assembly firstly increases and then decreases with increasing loading rate in range of 10–70 μm/s, peaks at the loading rate of 50 μm/s. When the COG assembly was exposed in the coupling loads of temperature, electric current and hygrothermal stress, its maximum shear force decreases with the increase of hygrothermal aging time. However, as for thermal cycling aging time increases, the maximum shear force increases initially and then decreases for the COG assembly under the coupling loads of temperature, electric current and thermal stress. The functions of the maximum shear force with aging time were obtained by fitting experiment data. Secondly, the real-time resistances of COG assembly during shear test and aging process were detected using two-point probe. In shear process, the real-time resistance increases insignificantly in elastic deformation stage but increases rapidly in viscoelastic deformation stage prior to the fracture. Due to the combined influences of temperature, electric current and stress, the resistance increases remarkably with the increase of hygrothermal aging time and it increases slightly with the increase of thermal cycling aging time. However, the real-time resistance exhibits circulation changes corresponding to thermal cycling. Finally, the relationship of resistance with the maximum shear force of energized COG assembly versus environmental aging times was studied.  相似文献   

3.
Due to the potential to provide finer pitch, smaller contact area, higher density, and higher pin–count interconnection of driver ICs in the LCDs, extensive investigations on the chip-on-glass (COG) progress have been carried out. However, there has been little research on the fatigue behavior of the COG modules using the electro-mechanical response. This paper investigated the resistance change and fatigue behavior of COG modules undergoing various mechanical loading. It is noted that the shear force prior to fracture is determined as 61.09 N, at which the resistance is found extremely high and can be regarded as open circuits. During the fatigue experiments, it is shown that the fatigue life of COG modules decreases with the increasing loading amplitudes and the Basquin’s equation agrees well with the experimental data. Moreover, the resistance changes instantaneously and periodically with the cyclically mechanical load, but the transient resistance change does not consist perfectly with the loading variation over a period of time. The higher the loading amplitude, the higher the relative resistance. In the meantime, the relative resistance prior to fracture increases firstly and then decreases with the increasing loading amplitudes as a result of the different extent of deteriorations of ACF bumps, different numbers of micro-cracks and cavities induced in material. The results provide guidance for the design, manufacture and development of the COG modules.  相似文献   

4.
A new accelerated stress test method was developed to evaluate creep life of flip-chip solder joints with underfill. With this method, a cyclic creep test can be done simply by applying a displacement to the FR-4 printed circuit board (PCB) board in the axial direction. The creep fatigue test was performed under displacement control with real-time electrical continuity monitoring. Test results show that the displacement arising from the force is equivalent to the thermal stress during thermal expansion. It was found that the magnitude of displacement was proportional to the inelastic strain sustained by the solder joints. This indicates that the creep fatigue life obtained will not only reflect the quality of the solder joints, but can also be used to characterize the reliability of the flip-chip assembly. Finite element modeling was also performed to confirm the agreement of deformation of the solder joints under mechanical and thermal loading. Results suggest that deformation and strain of the flip-chip assembly are consistent or comparable between the mechanical and thermal cycling. The failure analysis indicates that fatigue cracks often initiate from the top edge of a corner solder joint in the creep fatigue test, which is similar to what would happen in thermal cycling test. Lastly, the effect of underfill on the creep fatigue test is discussed. It is postulated that the test method is applicable to other flip-chip assemblies, such as conductive adhesive interconnections.  相似文献   

5.
Ball grid array (BGA) package styles use solder balls as electrical interconnects between packages and application boards. Solder balls are rigid and tend to fracture under thermal fatigue and/or shock loading. Metalized polymer spheres (MPS) offer a more compliant interconnect, compared to solder balls, thereby increasing the thermal cycling fatigue life. A reduction in thermal and electrical performance may be expected for MPS interconnects as a result of its higher thermal and electrical resistances. A 5% and an 8% increase in MPS thermal resistance was measured for a carrier array ball grid array (CABGA) package and a plastic ball grid array (PBGA) package, respectively, compared to eutectic solder balls. However, this small reduction was offset by large gains in the solder joint life. A 1.6 times increase in the mean thermal fatigue life was measured for a CABGA using MPS interconnects compared to eutectic solder balls. A first-order model showed that eutectic solder balls provide greater process margins, compared to MPS interconnects, due to the ball collapse during reflow.  相似文献   

6.
High Cycle Cyclic Torsion Fatigue of PBGA Pb-Free Solder Joints   总被引:1,自引:0,他引:1  
In this study, a comprehensive experimental and numerical approach was used to investigate high cycle cyclic torsion fatigue behavior of lead-free solder joints in a plastic ball grid array (PBGA) package. The test vehicle was a commercial laptop motherboard. The motherboard was subjected to torsional loading and life tests were conducted. Using finite element analysis (FEA), the test assembly was simulated as a global model and the BGA component was simulated as a local model. Strains measured on the motherboard surface near by the BGA were used to calibrate the FEA models. By combining the life test results and FEA simulations, a high cycle fatigue model for the lead-free solder joints was generated based on the Coffin-Manson strain-range fatigue damage model. This model can now be used to predict the cycles to failure of BGA interconnects for new electronic product design under cyclic torsion loading.  相似文献   

7.
In this study, experimental works are performed to investigate the deformation mechanism and electrical reliability of the anisotropic conductive adhesive film (ACF) joint subjected to temperature cycling for flip chip on organic board (FCOB) assemblies. This paper presents some dominant deformation parameters governing the electrical degradation in an ACF joint between a chip and a substrate when flip chip assembly is heated and cooled. The deformation mechanism of ACF flip chip assemblies during the temperature cycling are investigated using in situ high sensitivity moiré interferometry. A four-point probe method is conducted to measure the real-time contact resistance of ACF joint subjected to the cyclic temperature variation. As the temperature increases below Tg of ACF, the bending displacement of assembly decreases linearly. At the temperature higher than Tg of ACF, there is no further change in bending behavior and in-plane deformations of a chip and a substrate become approximately free thermal expansion. It is because that soft-rubbery ACF at the temperature above Tg cannot provide the mechanical coupling between a chip and a substrate. The effect of bump location on the temperature dependent contact resistance is evident. A characteristic hysteresis in bending curves is observed and discussed. The contact resistance of the corner bumps increases with increasing temperature at a higher rate when compared to that of the middle. Failure analysis is performed to examine the ACF interconnections before and after thermal cycling test. The results indicate that during the thermal loading, the shear deformation is more detrimental to the electrical degradation of ACF joints than normal strain.  相似文献   

8.
This paper describes how the material properties of conductive particles in anisotropic conductive films (ACFs) affect the electrical conductivity and the reliability of ACF interconnections for chip-on-glass (COG) applications. For the conductive particles, Au/Ni-coated polymer particles with a 5-diameter were used. Two different types of conductive particles were characterized with respect to their mechanical and electrical properties, such as ball hardness, recovery behavior, and electrical resistance. In addition, two ACFs were fabricated in the form of a double-layered structure, in which the thickness of the ACF and a nonconductive film (NCF) layer were optimized to have as many conductive particles as possible on the bump after COG bonding. The electrical contact resistance of an ACF interconnection in a COG structure depends mainly on the electrical properties of conductive particles in the ACF. The electrical reliability of an ACF interconnection in a COG structure also depends more on the electrical properties than the mechanical properties of conductive particles under a high-temperature and humid condition. Conductive particles with a lower electrical resistance, higher mechanical hardness, and lower recovery rate show better reliability than conductive particles with a higher electrical resistance, lower mechanical hardness, and higher recovery rate. Cross-sectional scanning electron microscopic (SEM) pictures of a COG interconnection show the deformation of two different conductive particles after the reliability tests. The ACF interconnections in the edge or corner of a driver IC show less reliable joints due to high absorption of moisture.  相似文献   

9.
When a bare die is flipped directly onto the printed circuit board (PCB) during chip-on-board assembly, it becomes exposed to a number of factors, which could influence its electrical performance. Although the mechanical integrity of flip-chip devices has been thoroughly studied, there is very little evidence of detailed investigations of the electrical performance of these devices. The present paper aims to bridge this gap by studying the electrical parameters of flip chip devices and analysing the changes occurring following assembly. A dedicated test chip comprised of passive and active semiconductor devices was designed for the study. Two different types of tacky flux and underfill materials were used in the flip chip assembly process. The flip chip structures were then subjected to various environmental stress techniques for accelerating ageing. Electrical parameters of the devices such as threshold voltage, I-V characteristics, off-state leakage current, current gain, and resistance were measured at various stages of the programme. A slight change in device parameters was observed immediately after assembly. Further change in some device parameters was observed after environmental stressing. The paper investigates the mechanisms that could be responsible for the changes, such as mechanical stresses introduced during the flip chip process or ionic contamination inherent to the assembly process.  相似文献   

10.
平行缝焊是陶瓷封装中应用最为广泛的高可靠性气密性封装方式之一。由于焊接过程中,盖板表面镀层会发生熔化、破坏等过程,可伐基底会被暴露在环境中,导致盐雾腐蚀失效。利用Abaqus有限元分析软件,选择2种代表性的可伐盖板镀层结构,分析不同加载温度条件下可伐盖板及其表面镀层的温度分布。仿真结果表明,当可伐盖板采用Ni/Au的镀层结构时,控制焊接温度范围为1200~1400℃,有希望保证平行缝焊耐盐雾腐蚀可靠性,并给出其耐盐雾腐蚀机理。  相似文献   

11.
激光辐照40~#Cr钢的腐蚀电化学特性与腐蚀疲劳性能的研究   总被引:1,自引:0,他引:1  
用对比的方法研究了不同激光辐照工艺对40~#Cr钢耐蚀性和腐蚀疲劳性能的影响。结果表明,激光相变硬化处理的耐蚀性优于激光表面重熔处理的试样的耐蚀性。经激光表面辐照处理后,其腐蚀疲劳寿命也显著提高。结合光镜和SEM分析了材料的耐蚀机理和腐蚀疲劳断裂的特征与机制。  相似文献   

12.
The shear fatigue lives of Anisotropic Conductive Adhesive Film (ACF) joints were evaluated experimentally and theoretically under different testing conditions. The shear fatigue tests of ACF joints were performed with different loading amplitudes. It is found that the fatigue lives of ACF joints decrease with increasing loading amplitudes and Basquin’s equation is fit to predict the fatigue lives of ACF joints. Hygrothermal aging and thermal cycling tests were conducted to investigate the shear strength and lives of ACF joints. The results show that the shear strength and lives of ACF joints decrease with increasing hygrothermal aging time, however increase firstly and then decrease with increasing thermal cycling time. The fatigue life model considering aging damage is proposed and the predictions of the fatigue life agree with the experimental results at different aging time for ACF joints.  相似文献   

13.
Measuring mechanical implications of high current densities in microelectronic packaging interconnects has always been a challenging goal. Due to small interconnect size this task has typically been accomplished by measuring the change in electrical resistance of the joint. This measurement parameter is global and does not give local mechanical state information. Also, understanding strain evolution in the solder over time is an important step toward developing a damage mechanics model.The real-time, full-field, strain displacement in a eutectic Sn/Pb solder joint during electrical current stressing was measured with Moiré interferometry (Post et al., High sensitivity Moire, Springer, New York, 1994) under in situ conditions. A finite element model simulation for thermal stressing was performed and compared with measured strain. The initial results show that the measured strain was largely due to thermal stressing versus the current density of 1.8 × 102 A/cm2. A second Moiré interferometry experiment with thermal control distinguishes deformation of solder joint due to pure current stressing above 5000 A/cm2.  相似文献   

14.
介绍了一种利用强脉冲激光诱导产生的冲击波压力来进行金属表面改性的新技术——受控激光喷丸强化技术,可以大幅度提高金属材料的疲劳寿命和抗应力腐蚀能力,但疲劳寿命和抗应力腐蚀能力并不总随着喷丸强度的提高而线性增加。最佳的疲劳寿命和抗应力腐蚀能力常出现在特定的残余压应力水平和分布下,也即取决于喷丸参数的最佳组合。由于激光喷丸中工艺参数对喷丸后工件表层的残余应力场有决定性的影响,如何依据已给的疲劳寿命和抗应力腐蚀能力来合理确定喷丸强化的工艺参数成为目前主要的研究方向。受控激光喷丸的机理与残余应力的形成过程密切相关。首先在理论上研究了影响残余应力分布的激光喷丸工艺参数,如激光功率密度、脉冲宽度、光斑直径等,以及这些参数和残余应力层深度的关系。然后采用QT700-2试样进行激光喷丸强化对比实验,对激光喷丸后的残余应力场大小及其分布进行了无损检测。结果表明,在激光喷丸强化工件时,残余压应力层厚度存在一个最佳值,此时金属表面的疲劳性能和抗应力腐蚀性最优,喷丸工艺参数也达到一个最佳组合。  相似文献   

15.
The work presented in this paper explores the possibility of using composite nickel matrix electrodeposits prepared under direct current (DC) and pulse current (PC) conditions as electrical contact materials. The codeposition of liquid containing microcapsules (μcaps) along with the metal matrix from electrolytic baths leads to the development of new type of materials with prespecified properties: the liquid-containing metal electrocoatings. The incorporation, in the nickel matrix, of polymeric wall μcaps containing oil ensures a self-lubrication and cooling action during fretting or transient operation. The electrical properties of composite nickel electrodeposits have been investigated. Different preparation conditions have been employed. Their contact resistance and interfacial temperature have been monitored for a great number of operation cycles during the simultaneous application of mechanical and electrical fatigue. SEM and XRD analysis were applied toward investigating the structural characteristics of the inter-electrode surfaces  相似文献   

16.
《Microelectronics Reliability》2014,54(12):2871-2880
We investigate the mechanical durability and environmental stability of laser annealed silver (Ag) nanoparticle (NP) film. Roll-to-roll printed Ag NP film on polyethylene terephthalate substrate is annealed with a rapid laser annealing process in ambient conditions as an alternative to the conventional thermal annealing process. The laser annealed Ag NP film exhibits superior electrical and mechanical properties, with fast annealing time and no damage on the substrate. The outer/inner bending test results demonstrate that the flexibility of the laser annealed Ag film is excellent. The failure bending radii in the outer/inner bending tests are 3 mm. The laser annealed film can withstand 10,000 bending cycles. A nano-scratch test indicates that the adhesion strength of the laser annealed film is comparable to that of the thermal annealed film. The environmental reliability of Ag NP film is investigated under different high-temperature and high-humidity conditions, while being subjected to cyclic bending fatigue stress. The durability of printed Ag film is found to be influenced by temperature and humidity. The laser annealed film shows relatively large increase in resistance during the bending fatigue test under high temperature and humidity condition (60 °C/90% RH), which is attributed to the oxidation of Ag nanoparticles and initiation of cracks. Generation of cracks is accelerated owing to the combinational effects of the cyclic stress and humidity. These results suggest that, even though the laser annealed Ag film demonstrates sufficient mechanical durability, further improvement of the film properties is required for use in extreme mechanical and environmental conditions.  相似文献   

17.
激光熔覆对铝合金疲劳性能的影响   总被引:5,自引:1,他引:4  
对模拟腐蚀损伤的铝合金试样表面进行了激光熔覆填充处理,分析了激光熔覆层的显微组织,并对熔覆试样和基材试样进行了疲劳寿命对比实验。结果表明,表面激光熔覆会显著降低材料的疲劳性能,在99%可靠度的前提下,熔覆试样的安全寿命比基材试样有所降低。其主要影响因素有熔覆层底部的枝晶、重熔区内的缺陷和熔覆层内的拉应力。经过表面机械冲击后,疲劳性能得到显著提高,提高幅度为244%,疲劳断口形貌表明,熔覆层有明显的疲劳特征。  相似文献   

18.
When assessing the mechanical durability of electronic assemblies, the focus is generally on the solder interconnects. However, in many package styles, such as ball grid arrays (BGAs), land grid arrays (LGAs), micro lead frame (MLFs) and quad flat no-lead (QFNs), the Cu trace emanating from the solder pad may be the weakest failure site, especially if the solder joint is copper-defined rather than mask defined. This is particularly true in situations with cyclic mechanical loading, such as cyclic quasi-static bending, vibration and repetitive drop/shock.This study focuses on quasi-static mechanical cycling durability of LGA assemblies with copper-defined pads. Specimens were cycled to failure under zero-to-max, three-point bending and failure statistics were collected. The failure mode was confirmed to be fatigue cracks in copper traces emanating from the corner solder pads, just at the edge of the solder mask where the solder joint ends. The cracks were identified by lateral polishing after desoldering the component.The cyclic bending of this assembly was modeled with 3D, elastic-plastic, large deformation finite element analysis. Due to the complexity of the geometry, a global-local approach was used to identify the strain history and the mean stress at the failure site.A generalized strain-based fatigue model was used to characterize these failures, and preliminary model constants were iteratively estimated by ensuring that they were simultaneously compatible with both the durability test data and the copper stress-strain curves used in the FEA (finite element analysis).These preliminary model constants were then refined by separately modeling the initiation and progression history of fatigue damage in the cyclic bend tests. Damage progression was modeled in this study by using a technique of ‘successive initiation’ developed earlier by this research group. In this method, finite element simulations are used to progressively ‘kill’ elements that have accumulated sufficient fatigue damage to lose their load-carrying capacity. When the killed elements span the entire cross-section of the copper trace, the trace is assumed to electrically fail.This calibrated model is then used to demonstrate its ability to predict copper trace failures in other situations such as quasi-static four-point bending of LGA assemblies and vibration of BGA assemblies. More important, we demonstrate its use for re-designing of BGA assemblies to prevent copper trace failures under drop/shock loading.The important impact of this study includes insight into copper trace failures in Printed Wiring Assemblies (PWAs) under mechanical cycling, a quantitative model to predict its occurrence, and validated guidelines to prevent it by design.  相似文献   

19.
Anisotropic conductive adhesive (ACA) assembly is emerging as one of the most flexible and cost effective packaging interconnect methods in the microelectronics industry. One of the major impediments to the full realization of the fine pitch (<200 /spl mu/m) capabilities of this assembly method is accurate prediction and control of electrical contact resistance. This paper presents a detailed review and direct comparisons of the different models that have been used to predict electrical contact resistance in ACA interconnects. It is found that large discrepancies exist among these models and between contact resistance values experimentally measured and what these models predict. The governing equations and assumptions underlying the models and their implications are examined, and possible rationales for the observed discrepancies and future directions for developing improved models are identified. The study shows that important issues generally not considered in current models are tunneling resistance, multimaterial layers, edge effect, rough surfaces, elastic recovery and residual forces, interaction between nearby particles and variation on the radii of multiple particles.  相似文献   

20.
The mechanical properties and the critical current were studied in three commercial multifilamentary Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10+x//Ag tapes subjected to monotonic and fatigue tension at 77 K in the longitudinal direction. It was found that transport properties were not compromised under monotonic tension if the maximum tensile stress remained below the conventional 0.2% yield strength. This magnitude was reduced by 10% to 20% in the case of fatigue loading, and the service life of the tape was dictated by the mechanical fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号