首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

2.
Groundwater arsenic survey in Cachar and Karimganj districts of Barak Valley, Assam shows that people in these two districts are drinking arsenic-contaminated (max. 350 μg/l) groundwater. 66% of tubewells in these two districts have arsenic concentration above the WHO guideline value of 10 μg/l and 26% tubewells have arsenic above 50 μg/l, the Indian standards for arsenic in drinking water. 90% of installed tubewells in these two districts are shallow depth (14–40 m). Shallow tubewells were installed in Holocene Newer Alluvium aquifers are characterised by grey to black coloured fine grained organic rich argillaceous sediments and are mostly arsenic contamination in groundwater. Plio-Pleistocene Older Alluvium aquifers composed of shale, ferruginous sandstone, mottle clay, pebble and boulder beds, which at higher location or with thin cover of Newer Alluvium sediments are safe in arsenic contamination in groundwater. 91% of tubewell water samples show significantly higher concentrations of iron beyond its permissible limit of 1 mg/l. The iron content in these two districts varies from 0.5 to as much as 48 mg/l. Most of the arsenic contaminated villages of Cachar and Karimganj districts are located in entrenched channels and flood plains of Newer Alluvium sediments in Barak-Surma-Langai Rivers system. However, deeper tubewells (>60 m) in Plio-Pleistocene Older Alluvium aquifers would be a better option for arsenic-safe groundwater. The arsenic in groundwater is getting released from associated Holocene sediments which were likely deposited from the surrounding Tertiary Barail hill range.  相似文献   

3.
High arsenic levels in groundwater of the aquifers, belonging to the Pliocene terrestrial layers and Quaternary alluvial sediments, have become a significant problem for the inhabitants living in Sarkisla (Turkey). The main objective of this study was to determine the origin and arsenic contamination mechanisms of the Sarkisla drinking water aquifer systems. The highest arsenic concentrations were found in Pliocene layers and alluvial sediments with concentrations ranging from 2.1 to 155 mg/kg. These rocks are the main aquifers in the study area, and most of the drinking groundwater demand is met by these aquifers. Groundwater from the Pliocene aquifer is mainly Ca-HCO3 and Ca-SO4 water type with high EC values reaching up to 3,270 μS/cm, which is due to the sulfate dissolution in some parts of the alluvial aquifer. Stable isotope values showed that the groundwater was of meteoric origin. Tritium values for the groundwater were between 8.31 and 14.06 TU, representing a fast circulation in the aquifer. Arsenic concentrations in the aquifers were between 0.5 and 345 μg/L. The highest arsenic concentrations detected in the Pliocene aquifer system reached up to 345 μg/L with an average value of 60.38 μg/L. The arsenic concentrations of the wells were high, while the springs had lower arsenic concentrations. These springs are located in the upper parts of the study area where the rocks are less weathered. The hydrogeochemical properties demonstrated that the water–rock interaction processes in sulfide-bearing rocks were responsible for the remarkably high groundwater arsenic contamination in the study area. In the study area, the arsenic levels determined in groundwater exceeded the levels recommended by the WHO. Therefore, it is suggested that this water should not be used for drinking purposes and new water sources should be investigated.  相似文献   

4.
In the Red River Delta, situated in the northern part of Vietnam, nearly its entire population depends solely on groundwater for daily water consumptions. For this reason, groundwater quality assessments must be carefully carried out using hydrogeochemical properties, to ensure effective groundwater resource planning for the Delta’s present and future groundwater use. In this study, the spatial and seasonal changes in the hydrogeochemical characteristics of groundwater in the two main aquifers of the RRD were investigated by analyzing the physicochemical data obtained in 2011 from 31 conjunctive wells in the Delta’s Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA) using the Piper diagram and the Gibbs diagram. Results of the data analysis show that the groundwater in both aquifers in the upstream area of the delta is dominated by the [Ca2+–HCO3] water-type, while the [Na+–Cl] dominates along the middle-stream and downstream areas. Seasonal changes in the hydrogeochemical facies in both aquifers, comparing the results for the dry and the rainy seasons, were detected in about one third of the sampling wells, which were mainly located at the upstream portion of the Delta. The hydrogeochemical facies of HUA were different from that of PCA by about 45% of the sampling wells in both the dry and the rainy seasons, which were found mostly in the upstream and middle-stream areas.  相似文献   

5.
Late Quaternary stratigraphy and sedimentation in the Middle Ganga Plain (MGP) (Uttar Pradesh–Bihar) have influenced groundwater arsenic contamination. Arsenic contaminated aquifers are pervasive within narrow entrenched channels and flood plains (T0-Surface) of fine-grained grey to black coloured argillaceous organic rich Holocene sediments (Newer Alluvium). Contaminated aquifers are often located close to distribution of abandoned or existing channels and swamps. The Pleistocene Older Alluvium upland terraces (T2-Surface) made up of oxidized yellowish brown sediments with calcareous and ferruginous concretions and the aquifers within it are free of arsenic contamination. MGP sediments are mainly derived from the Himalaya with minor inputs from the Peninsular India. The potential source of arsenic in MGP is mainly from the Himalaya. The contaminated aquifers in the Terai belt of Nepal are closely comparable in nature and age to those of the MGP. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxidea and later on released to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of organic matter in aquifer. Strong reducing nature of groundwater is indicated by high concentration of dissolved iron (11.06 mg/l). Even within the arsenic-affected areas, dugwells are found to be arsenic safe due to oxyginated nature.  相似文献   

6.
A groundwater arsenic (As) survey in Mirzapur, Varanasi, Ghazipur, Ballia, Buxar, Ara, Patna, and Vaishali districts of UP and Bihar shows that people from these districts are drinking As-contaminated groundwater (max. 1,300 μg/l). About 66 % of tubewells from Buxar to Mirzapur areas and 89 % of tubewells from Patna to Ballia areas have As?>?10 μg/l (WHO guideline). Moreover, 36 % of tubewells from Buxar to Mirzapur areas and 50 % of tubewells from Patna to Ballia areas have As above 50 μg/l. Most of the As-affected villages are located close to abandoned or present meander channels of the Ganga River. In contrast, tubewells located in Mirzapur, Chunar, Varanasi, Saidpur, Ghazipur, Muhammadabad, Ballia, Buxar, Ara, Chhapra, Patna, and Hazipur towns are As-safe in groundwater because of their positions on the Pleistocene Older Alluvium upland surfaces. The iron (Fe) content in tubewell water samples varies from 0.1 to 12.93 mg/l. About 77 % As-contaminated tubewells are located within the depth of 21 to 40 m in the Holocene Newer Alluvium aquifers. The potential source of As in sediments carried through the rivers from the Himalayas. Maximum As concentrations in the Older and Newer Alluvium sediments are 13.73 and 30.91 mg/kg, respectively. The Himalayas rivers, i.e. Yamuna, Ganga, Gomati, Ghaghara, Gondak, Buri Gandak, and Kosi rivers carrying suspended sediments have high content of As (max. 10.59 mg/kg).  相似文献   

7.
Arsenic occurrence in groundwater near the Cimino-Vico volcanoes (central Italy) was analysed considering the hydrostratigraphy and structural setting and the shallow and deep flows interacting within the Quaternary volcanics. Groundwater is the local source of drinking water. As documented in the past, arsenic in the groundwater has become a problem, and the European maximum allowable contaminant level was recently lowered to 10 μg/L. Chemical analyses of groundwater were conducted, sampled over an area of about 900 km2, from 65 wells and springs representative of the volcanic aquifer and thermal waters. Considering the type of aquifer, the nature of the aquifer formation and its substratum, the hydrochemical data highlight that the arsenic content of the groundwater is mainly connected with the hydrothermal processes in the volcanic area. Thermal waters (54–60°C) fed from deep-rising fluids show higher arsenic concentrations (176–371 μg/L). Cold waters sampled from the volcanic aquifer are characterized by a wide variability in their arsenic concentration (1.6–195 μg/L), and about 62% exceed the limit of 10 μg/L. Where the shallow volcanic aquifer is open to deep-rising thermal fluids, relatively high arsenic concentrations (20–100 μg/L) are found. This occurs close to areas of the more recent volcano-tectonic structures.  相似文献   

8.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

9.
Over a large area of the Bengal delta in West Bengal, India, arsenic distribution patterns in groundwater were studied. One hundred and ten boreholes at different target locations were made, subsurface sediments were logged and analysed, and arsenic values in sediments vis-à-vis groundwater were compared. The study elucidates the subsurface geology of the western part of Bengal delta and characterises the sediments that were intersected in different boreholes with contrasting values of arsenic in groundwater. It reveals an existence of multiple aquifers stacked over each other. Depending on the color and nature of aquifer-sands and their overlying clay beds six aquifer types (Type-1 to Type-6) are classified and described. Sediment-arsenic for all the varieties of aquifer sands are near similar but the groundwater-arsenic of these six aquifers varies widely. Type-2 and Type-5 aquifers host arsenic-contaminated groundwater whereas the other four aquifers are arsenic-free. Type-2 and Type-5 aquifers are capped by a grey to dark grey soft organic matter-rich clay unit which makes these aquifers semi-confined to leaky-confined. These contribute in releasing arsenic from the sediments. The results of this study are employed in a proposed georemedial measure against this hazardous toxic element.  相似文献   

10.
Late Quaternary stratigraphy and sedimentation in the Ganga Alluvial Plain and the Bengal Basin have influenced arsenic contamination of groundwater. Arsenic contaminated aquifers are pervasive within lowland organic rich, clayey deltaic sediments in the Bengal Basin and locally within similar facies in narrow, entrenched river valleys within the Ganga Alluvial Plain. These were mainly deposited during early-mid Holocene sea level rise. Arsenic was transported from disseminated sources as adsorbed on dispersed phases of hydrated-iron-oxide. These were preferentially entrapped as sediment coatings on organic-rich, fine-grained deltaic and floodplain sediments. Arsenic was released later to groundwater mainly by reductive dissolution of hydrated-iron-oxide and corresponding oxidation of sediment organic matter. Strong reducing nature of groundwater in the Bengal Basin and parts of affected middle Ganga floodplains is indicated by high concentration of dissolved iron (maximum 9-35 mg/l). Groundwater being virtually stagnant under these settings, released arsenic accumulates and contaminates groundwater. The upland terraces in the Bengal Basin and in the Central Ganga Alluvial Plain, made up of the Pleistocene sediments are free of arsenic contamination in groundwater. These sediments are weakly oxidised in nature and associated groundwater is mildly reducing in general with low concentration of iron (<1 mg/l), and thus incapable to release arsenic. These sediments are also flushed free of arsenic, released if any, by groundwater flow due to high hydraulic head, because of their initial low-stand setting and later upland terraced position.  相似文献   

11.
High concentrations of geogenic As in the groundwaters of south and SE Asia, which are used as drinking waters, are causing severe health impacts to the exposed human populations. It is widely accepted that As mobilisation from sediments into these shallow reducing groundwaters requires active metal-reducing microbes and electron donors such as organic matter (OM). Although OM in such Holocene aquifers has been characterised, there is a dearth of data on Pleistocene aquifers from the same areas. Reported here are preliminary studies of OM and microbial communities present in two aquifers, one of Pleistocene and one of Holocene age, with contrasting concentrations of As (viz. Pleistocene: low As <10 μg/L; Holocene: high As up to 600 μg/L) from Van Phuc village in the Red River Delta, Vietnam. Results revealed OM inputs from multiple sources, including potential contributions from naturally occurring petroleum seeping into the shallow aquifer sediments from deeper thermally mature source rocks. Although concentrations vary, no noticeable systematic differences in biomarker distribution patterns within the OM were observed between the two sites. Microbial analyses did not show a presence of microbial communities previously associated with As mobilisation. All clone libraries were dominated by α-, β-, and γ-Proteobacteria not known to be able to reduce Fe(III) or sorbed As(V). Furthermore, representatives of the Fe(III)-reducing genus Geobacter could only be detected at very low abundance by PCR, using highly selective 16S rRNA gene primers, supporting the hypothesis that metal reduction is not a dominant in situ process in these sediments. No correlation between As concentration in groundwater and OM composition nor microbial community in the host sediments was found. This suggests that either (i) As is not being significantly mobilised in situ in these sediments, instead As appears to be mobilised elsewhere and transported by groundwater flow to the sites or (ii) sorption/desorption processes, as implicated by geochemical data from the cores, play a critical role in controlling As concentrations at these sites.  相似文献   

12.
A model has been established on the origin and extent of fresh groundwater, salty paleowaters and saltwater from recent seawater intrusions in the Red River flood plain in Vietnam. This was done with geological observations, geophysical borehole logging and transient electromagnetic methods. Salt paleowater is present up to 50–75?km from the coastline, with occurrence controlled by the Holocene transgression. A density-driven leaching of salty porewater has occurred from high-permeability Holocene sediments into underlying Pleistocene deposits, whereas diffusion has dominated in low-permeability layers. In the Pleistocene aquifer, the highest content of dissolved solids is found below two intrinsic valleys with Holocene marine sediments and along the coastline. Recent intrusion of saltwater from the South China Sea is observed in shallow groundwater 35?km inland, probably a result of transport of salty water inland in rivers or leaching of paleowaters from very young near-coast marine sediments. The observed inverted salinity profile, with high saline water overlying fresher groundwater, has been formed due to the global eustatic sea-level changes during the last 8,000–9,000?years. The proposed model may therefore be applicable to other coastal aquifers, with a proper incorporation of the local geological environments.  相似文献   

13.
14.
To study the geological control on groundwater As concentrations in Red River delta, depth-specific groundwater sampling and geophysical logging in 11 monitoring wells was conducted along a 45 km transect across the southern and central part of the delta, and the literature on the Red River delta’s Quaternary geological development was reviewed. The water samples (n = 30) were analyzed for As, major ions, Fe2+, H2S, NH4, CH4, δ18O and δD, and the geophysical log suite included natural gamma-ray, formation and fluid electrical conductivity. The SW part of the transect intersects deposits of grey estuarine clays and deltaic sands in a 15–20 km wide and 50–60 m deep Holocene incised valley. The NE part of the transect consists of 60–120 m of Pleistocene yellowish alluvial deposits underneath 10–30 m of estuarine clay overlain by a 10–20 m veneer of Holocene sediments. The distribution of δ18O-values (range −12.2‰ to −6.3‰) and hydraulic head in the sample wells indicate that the estuarine clay units divide the flow system into an upper Holocene aquifer and a lower Pleistocene aquifer. The groundwater samples were all anoxic, and contained Fe2+ (0.03–2.0 mM), Mn (0.7–320 μM), SO4 (<2.1 μM–0.75 mM), H2S (<0.1–7.0 μM), NH4 (0.03–4.4 mM), and CH4 (0.08–14.5 mM). Generally, higher concentrations of NH4 and CH4 and low concentrations of SO4 were found in the SW part of the transect, dominated by Holocene deposits, while the opposite was the case for the NE part of the transect. The distribution of the groundwater As concentration (<0.013–11.7 μM; median 0.12 μM (9 μg/L)) is related to the distribution of NH4, CH4 and SO4. Low concentrations of As (?0.32 μM) were found in the Pleistocene aquifer, while the highest As concentrations were found in the Holocene aquifer. PHREEQC-2 speciation calculations indicated that Fe2+ and H2S concentrations are controlled by equilibrium for disordered mackinawite and precipitation of siderite. An elevated groundwater salinity (Cl range 0.19–65.1 mM) was observed in both aquifers, and dominated in the deep aquifer. A negative correlation between aqueous As and an estimate of reduced SO4 was observed, indicating that Fe sulphide precipitation poses a secondary control on the groundwater As concentration.  相似文献   

15.
With the exception of the south of the country, the Netherlands has a strong bipartite hydrogeology: the Holocene part with a coastal dune belt and confining top layer of clay and peat further inland, and the Pleistocene, where thick phreatic aquifers dominate. This research aimed to ascertain the geochemical and palaeohydrological controls on the composition of shallow groundwater in 27 regions. Close to 6000 groundwater analyses were grouped and interpreted in terms of 1. salinity, 2. redox status, 3. acid/base and carbonate status and 4. natural nutrients NH4 and PO4. The a priori classification into geographical regions and geological formations revealed many statistically significant differences in medians, even for geologically or geographically related data groups. The compound-specific interpretation indicates that there are geogenically controlled, systematic differences in groundwater composition at the regional scale. The imprint of the geological sediments on the groundwater composition decreases in the order marine/estuarine via limnological, fluvial to aeolian. The imprints with respect to pH and carbonate status, natural nutrients and redox status are not necessarily interrelated. The vertical stratification in groundwater composition turns out to be often limited at the regional scale due to mutual occurrence of infiltrating and exfiltrating groundwater in regions and either the presence of a highly reactive Holocene, confining top layer or temporal changes in contamination. In the Holocene part, the salinity is controlled by the palaeoenvironmental conditions during the Holocene and by the recharge origin: the average Cl concentration decreases from estuarine via lagoonal to the former Zuider Sea (which was a bay). The most reduced states and also the highest nutrient concentrations and highest CO2 pressure are related to the presence of Holocene marine sediments in the confining top layer. Degradation of marine-derived organic matter as a nutrient source, is likely more intense in the Holocene deposits than that of peat and sedimentary remnants of terrestrial plants. A broad range in pH, carbonate status and redox status is encountered in the Pleistocene part. Here, the palaeohydrological evolution in terms of carbonate leaching together with the geological controls on the calcareous nature of the shallow sedimentary deposits cause regional differences in pH, calcite saturation and silicate weathering. One region with Late Pleistocene limnological deposits has deviating groundwater characteristics and appears more similar to the Holocene part of the Netherlands. Furthermore, reactive Fe is not abundant in all Pleistocene fluvial sediments nor is it maximally mobilised, as not all anoxic groundwater in these sediments is siderite-saturated. This leads to considerable intra- and inter-region variability.  相似文献   

16.
Arsenic contamination of well water is a serious issue in the Nawalparasi District of the Terai region in Nepal. A local investigation was carried out on 137 tube wells in 24 communities of the district in December 2011. The investigation revealed that the average arsenic concentration in the tube wells was 350 μg/L, and that nearly 98 % of the wells exceeded the WHO guideline arsenic level limit of 10 μg/L. Highly contaminated well water, with more than 400 μg/L of arsenic, was found within the limited depth ranges of 18–22 and 50–80 m. High arsenic levels exceeding 500 μg/L were detected in shallower wells at Patkhauli, Mahuawa, Thulokunwar, and Goini located between 27.517° and 27.543°N and between 83.648° and 83.748°E. Boring sampling at five communities of Kashiya, Goini, Sanokunwar, Thulokunwar, and Mahuawa revealed two aquifers located at the two depths around 14–22 and 41–50 m in each community. Dark gray or black-colored peaty clay layers rich in organic matter were distributed at depths of 18–21 m beside the upper aquifers with high arsenic concentration in each community. Positive correlations were shown between iron and arsenic in the sediments from the five communities. It can be inferred that these results were caused by dissolution of iron-oxyhydroxide molecules with arsenic from solid phases. Microbial metabolisms have a great potential to induce the dissolution and release arsenic attached on the solid phases into aqueous phases depending on the level of redox potential and pH.  相似文献   

17.
 Arsenic toxicity in groundwater in the Ganges delta and some low-lying areas in the Bengal basin is confined to middle Holocene sediments. Dissected terraces and highlands of Pleistocene and early Holocene deposits are free of such problems. Arsenic-rich pyrite or other arsenic minerals are rare or absent in the affected sediments. Arsenic appears to occur adsorbed on iron hydroxide-coated sand grains and clay minerals and is transported in soluble form and co-precipitated with, or is scavenged by, Fe(III) and Mn(IV) in the sediments. It became preferentially entrapped in fine-grained and organic-rich sediments during mid-Holocene sea-level rises in deltaic and some low-lying areas of the Bengal basin. It was liberated subsequently under reducing conditions and mediated further by microbial action. Intensive extraction of groundwater for irrigation and application of phosphate fertilizer possibly triggered the recent release of arsenic to groundwater. This practice has induced groundwater flow, mobilizing phosphate derived from fertilizer, as well as from decayed organic matter, which has promoted the growth of sediment biota and aided the further release of arsenic. However, the environment is not sufficiently reducing to mobilize iron and arsenic in groundwater in the Ganges floodplains upstream of Rajmahal. Thus, arsenic toxicity in the groundwater of the Bengal basin is caused by its natural setting, but also appears to be triggered by recent anthropogenic activities. Received: 23 August 1999 · Accepted: 16 November 1999  相似文献   

18.

Background

High salinity and arsenic (As) concentrations in groundwater are widespread problems in the tidal deltaplain of southwest Bangladesh. To identify the sources of dissolved salts and As, groundwater samples from the regional shallow Holocene aquifer were collected from tubewells during the dry (May) and wet (October) seasons in 2012–2013. Thirteen drill cores were logged and 27 radiocarbon ages measured on wood fragments to characterize subsurface stratigraphy.

Results

Drill cuttings, exposures in pits and regional studies reveal a >5 m thick surface mud cap overlying a ~30 m thick upper unit of interbedded mud and fine sand layers, and a coarser lower unit up to 60 m thick dominated by clean sands, all with significant horizontal variation in bed continuity and thickness. This thick lower unit accreted at rates of ~2 cm/year through the early Holocene, with local subsidence or compaction rates of 1–3 mm/year. Most tubewells are screened at depths of 15–52 m in sediments deposited 8000–9000 YBP. Compositions of groundwater samples from tubewells show high spatial variability, suggesting limited mixing and low and spatially variable recharge rates and flow velocities. Groundwaters are Na–Cl type and predominantly sulfate-reducing, with specific conductivity (SpC) from 3 to 29 mS/cm, high dissolved organic carbon (DOC) 11–57 mg/L and As 2–258 ug/L, and low sulfur (S) 2–33 mg/L.

Conclusions

Groundwater compositions can be explained by burial of tidal channel water and subsequent reaction with dissolved organic matter, resulting in anoxia, hydrous ferric oxide (HFO) reduction, As mobilization, and sulfate (SO4) reduction and removal in the shallow aquifer. Introduction of labile organic carbon in the wet season as rice paddy fertilizer may also cause HFO reduction and As mobilization. Variable modern recharge occurred in areas where the clay cap pinches out or is breached by tidal channels, which would explain previously measured 14C groundwater ages being less than depositional ages. Of samples collected from the shallow aquifer, Bangladesh Government guidelines are exceeded in 46 % for As and 100 % for salinity.
  相似文献   

19.
The Guarani aquifer system (GAS) represents one of the biggest aquifers in the world and is the most relevant groundwater resource in South America. For the first time, by combining field and laboratory measurements, a high-resolution aquifer analog model of fluvial–aeolian sediments of the GAS in São Paulo State (Brazil) is constructed. Three parallel sections of frontal outcrops, 28 m × 5.8 m, and two parallel sections of lateral outcrops, 7 m × 5.8 m, are recorded during open-pit mining of sandy sediments and describe in detail the three-dimensional distribution of the local lithofacies and hydrofacies. Variations of hydraulic conductivity, K, and porosity, n, are resolved on the centimeter scale, and the most permeable units of the fluvial–aeolian facies association are identified. The constructed aquifer analog model shows moderate hydraulic heterogeneity and a mean K value of 1.36 × 10?4 m/s, which is greater than the reported range of K values for the entire GAS in São Paulo State. The results suggest that the examined sedimentary unit constitutes a relevant portion of the GAS in São Paulo State in the context of groundwater extraction and pollution. Moreover, the constructed aquifer analog is considered an ideal basis for future numerical model experiments, aiming at in-depth understanding of the groundwater flow and contaminant transport patterns at this GAS portion or at comparable fluvial–aeolian facies associations.  相似文献   

20.
Groundwater arsenic (As) concentrations above 10 μg/L (World Health Organization; WHO standard) are frequently found in the Titas Upazila in Bangladesh. This paper evaluates the groundwater chemistry and the mechanisms of As release acting in an underground aquifer in the middle-northeast part of the Titas Upazila in Bangladesh. Previous measurements and analyses of 43 groundwater samples from the region of interest (ROI) are used. Investigation is based on major ions and important trace elements, including total As and Fe in groundwater samples from shallow (8–36 m below ground level: mbgl) and deep (85–295 mbgl) tube wells in the aforementioned ROI. Principal hydrochemical facies are Ca–HCO3, with circumneutral pH. The different redox-sensitive constituents (e.g., As, Fe, Mn, NH4, and SO4) indicate overlapping redox zones, leading to differences regarding the redox equilibrium. Multivariate statistical analysis (factor analysis) was applied to reduce 20 chemical variables to four factors but still explain 81% of the total variance. The component loadings give hints as to the natural processes in the shallow aquifers, in which organic matter is a key reactant. The observed chemistry of As, Fe, and Mn can be explained by simultaneous equilibrium between Fe-oxide and SO4 reduction and an equilibrium of rhodochrosite precipitation/dissolution. A correlation test indicates the likeliness of As release by the reductive dissolution of Fe-oxides driven by the degradation of sediments organic matter. Other mechanisms could play a role in As release, albeit to a lesser extent. Reactive transport modeling using PHREEQC reproduced the observed chemistry evolution using simultaneous equilibrium between Fe-oxide and SO4 reduction and the equilibrium of rhodochrosite dissolution/precipitation alongside organic matter oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号