首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The distribution of DRB1*04 alleles and DRB1/DQB1 haplotypes was analysed in 57 DR4+ caucasoid subjects with insulin-dependent diabetes mellitus (IDDM) and 96 DR4+ healthy controls selected on the basis of DR serology, and the findings were analysed in relation to age at diagnosis of IDDM. DNA samples were amplified using specific DR and DQ primers and hybridized with sequence-specific oligonucleotide probes. A significantly increased combined frequency of DRB 1*0401 and 0402 was observed in IDDM subjects aged ≤12 years at diagnosis (allele frequency 88.4% compared with 62.0% in controls, P < 0.025). There was a non-significant increase in DRB 1*0401 and 0402 in IDDM subjects ≤12 years when compared with IDDM subjects >12 years (P < 0.1). DRB 1 *0404 was decreased in the total IDDM subject group compared with controls (4.8% vs. 19.0%, P < 0.025) but did not reach statistical significance in the individual age at diagnosis groups. In contrast, the frequency of DQB1 *0302 was increased uniformly across both ages at diagnosis groups. In controls DRB 1*0401 occurred in haplotype association with DQB 1*0301 in a significantly greater frequency than with DQB 1*0302. However, 95.0% of DRB 1*0401 IDDM subjects were DQB 1*0302. DRB 1*0404, which was decreased in frequency in IDDM subjects, occurred in association significantly more frequently with DQB 1 *0302 in controls. These results imply that DRB 1 and DQB 1 have independent roles as HLA susceptibility genes in IDDM. DQB1 may have a permissive role whereas DRB1 could influence the rate at which underlying disease progresses to clinical IDDM.  相似文献   

2.
Insulin-dependent diabetes mellitus (IDDM) in Caucasians is strongly associated with HLA-DR3-DQ2 and DR4-DQ8. In order to investigate the HLA class II associations with IDDM in Algerians, we have used polymerase chain reaction (PCR) and sequence specific oligonucleotide analysis (SSO) to identify DQA1, DQB1, and DRB1 alleles, haplotypes and genotypes in 50 unrelated IDDM patients and 46 controls from a homogeneous population in Western Algeria. Both DRB1*0301-DQA1*0501-DQB1*0201 (DR3-DQ2) and DRB1*04-DQA1*0301-DQB1*0302 (DR4-DQ8) haplotypes were found at increased frequencies among the patients compared to controls (45% vs. 13%, RR = 5.5, Pc < 10-5 and 37% vs. 4%, RR = 12.9, Pc < 10-4, respectively). Among the latter, in contrast to other Caucasian populations, only DRB1*0405-DQA1*0301-DQB1*0302 was significantly increased in the Algerian patients (25% vs. 1% in controls, RR = 30.3, Pc < 10-3). Accordingly, the highest risk of disease was observed in DRB1*0301-DQA1*0501-DQB1*0201/DRB1*0405-DQA1*0301-DQB1*0302 heterozygotes (34% in patients vs. 0% in controls; RR = 49; Pc < 10-3). This observation and its comparison with DR-DQ haplotypes in other ethnic groups suggest that the DRB1*0405 allele which encodes an Asp57-negative β chain may contribute to IDDM susceptibility in a similar way as Asp57-negative DQβ chains.  相似文献   

3.
The aim of this study was to determine the association between childhood insulin-dependent diabetes mellitus (IDDM) and HLA-DR4 subtypes and to test in a population-based investigation whether the DR4 association has an effect independent to that of DQ. First, HLA genotyping identified DR4 in 337/425 (79%) patients and 148/367 (40%) controls (Odds Ratio 5.67; p<0.01). Second, a total of 14 DR4 subtypes were detected by PCR and sequence specific oligo probes. Only two DR4 subtypes, DRB1*0401 (62% patients and 25% controls; OR 4.95, p<0.01) and *0404 (16% patients and 10% controls; OR 1.67, p<0.05) were however positively associated with the disease. These two subtypes were positively associated only when linked to DQB1*0302-DQA1*0301 (DQ8) (56% patients and 14% controls; OR 7.69, p<0.01; 15% patients and 10% controls; OR 1.55, p<0.05, respectively). When DRB1*0401 was linked to DQB1*0301-DQA1*0301 (DQ7) (6% patients and 11% controls; OR 0.52, p<0.05), this DR4 subtypes was negatively associated with IDDM. Third, tests of strongest association allowed the following ranking of alleles or haplotypes: DQB1*0302-DQA1*0301 (DQ8) >DQB1*0302 > DRB1*0401 >DRB1*0404 and the association of DRB1*0401 has a significant effect in DQ8 positive IDDM patients. We conclude that the DR4 association with IDDM is secondary to DQ by linkage disequilibrium, which support the role of HLA-DQ as a primary genetic risk factor for IDDM.  相似文献   

4.
HLA-DR4 is a primary disease association marker in type 1 diabetes mellitus (IDDM). We therefore analyzed the transmission of 228 DR4+ haplotypes in 183 families with an IDDM proband (95 from Germany and 88 from Belgium). In a separate case-control data set, we investigated the HLA-DRB1*04 and DQ allele distribution in 245 IDDM patients and 177 controls from Germany, all DR4 positive. HLA-DRB1 *0401 and *0402 linked to DQB1 *0302 were significantly more often transmitted to patients in the studied families (81% and 89%) in contrast to DRB1 *0401-DQB1 *0301 (33%). The case-control study of HLA-DQB1 *0302+ individuals revealed -DRB1 *0405 to be more frequent in patients with IDDM and HLA-DRB1 *0403 and -DRB1 *0404 to be less frequent. HLA-DQA1 *0102-DQB1 *0602 and -DQA1 *0501-DQB1 *0301 in trans complementation with DRB1 *0401-DQB1 *0302 were also significantly less frequent in IDDM patients (P<3x 10(-7) and P<0.02). In conclusion, HLA-DRB1 *0403 and -DQB1*0301 alleles in cis as well as protective DQ haplotypes in trans, confer dominant protection against IDDM in a German / Belgian population.  相似文献   

5.
Insulin-dependent diabetes mellitus (IDDM) in Caucasians is strongly associated with HLA-DR3-DQ2 and DR4-DQ8. In order to investigate the HLA class II associations with IDDM in Algerians, we have used polymerase chain reaction (PCR) and sequence specific oligonucleotide analysis (SSO) to identify DQA1, DQB1, and DRB1 alleles, haplotypes and genotypes in 50 unrelated IDDM patients and 46 controls from a homogeneous population in Western Algeria. Both DRB1*0301-DQA1*0501-DQB1*0201 (DR3-DQ2) and DRB1*04-DQA1*0301-DQB1*0302 (DR4-DQ8) haplotypes were found at increased frequencies among the patients compared to controls (45% vs. 13%, RR = 5.5, Pc < 10(-5) and 37% vs. 4%, RR = 12.9, Pc < 10(-4), respectively). Among the latter, in contrast to other Caucasian populations, only DRB1*0405-DQA1*0301-DQB1*0302 was significantly increased in the Algerian patients (25% vs. 1% in controls, RR = 30.3, Pc < 10(-3). Accordingly, the highest risk of disease was observed in DRB1*0301-DQA1*0501-DQB1*0201/DRB1*0405-DQA1+ ++*0301-DQB1*0302 heterozygotes (34% in patients vs. 0% in controls; RR = 49; Pc < 10(-3). This observation and its comparison with DR-DQ haplotypes in other ethnic groups suggest that the DRB1*0405 allele which encodes an Asp57-negative beta chain may contribute to IDDM susceptibility in a similar way as Asp57-negative DQ beta chains.  相似文献   

6.
The DRB4 gene encoding the DR53 antigen is present in DRB1*04-, DRB1*07- and DRB1*09-positive individuals. Eight allelic variants of DRB4 have been recognized, 5 resulting in an expressed DR53 antigen and 3 belonging to the null alleles. So far the DRB4*0103102N null allele had been found exclusively in individuals carrying the haplotype DR7,-DQ9. High-resolution typing of HLA class II by polymerase chain reaction using sequence-specific primers (PCR-SSP) and/or sequence-based typing of kidney patients and their families revealed the presence of the DRB4*0103102N null allele segregating with DRB1*04 and DQB1*03 in 4 different families. Three different haplotypes on which the null allele was located, were recognized by family studies: DRB1*0401, DQB1*0301; DRB1*0402, DQB1*0302 and DRB1*0404, DQB1*0302. Determination of the DR53 specificity of antisera reacting with DR53-positive individuals has always been difficult due to the simultaneous presence of DR4, 7 or 9. Identification of DR4-positive DR53-negative individuals as described here, provided the serological reactions with DR53-antisera and revealed the antibody specificities in the antisera used.  相似文献   

7.
Type 1 diabetes mellitus (IDDM) is an autoimmune disorder in which the alleles HLA DQA1*0501–DQB1*0201 and DQA1*0301–DQB1*0302 confer strong susceptibility. The genes for transporters associated with antigen processing (TAP1 and TAP2) are located near HLA DQ and display only a limited degree of polymorphism. Since polymorphisms of TAP might influence susceptibility to IDDM possibly by selection of different antigen peptides, we investigated sequence variants of TAP1 and TAP2 genes in 120 German patients with IDDM and 218 random healthy German controls by polymerase chain reaction (PCR) followed by sequence-specific oligonucleotide analysis (SSO), single-strand conformation polymorphism (SSCP) analysis and amplification refractory mutation system (ARMS). TAP1*02011 (16% vs. 4% in controls, P = 0.001, RR = 5.0) and TAP2*0101 (96% vs. 69% in controls, P < 0.0001, RR = 10.6) showed a positive association with IDDM. However, these associations disappeared when patients and controls were matched for predisposing HLA DQA1 or DQB1 alleles as well as for DRB1*0401. In conclusion, our findings indicate that the observed association of TAP variants with IDDM in German patients is due to linkage disequilibrium with HLA DQ alleles/DRB1*04 subtypes.  相似文献   

8.
The contribution of genetic variation at HLA class II loci to the susceptibility to and protection from IDDM was investigated by analyzing the distribution of HLA-DRB1*04 haplotypes in 630 Sardinian newborns and 155 Sardinian IDDM patients. The different RRs and ARs of the various DR4-DQB 1*0302 haplotypes, significantly ranging from the strongly associated DRB 1*0405, DQB 1*0302 to the protective DRB 1*0403, DQB 1*0302 haplotypes, provides clearcut evidence that the DRB 1 locus is crucial in conferring IDDM predisposition or protection. Also, the DQB1 locus influences IDDM predisposition or protection by restricting the disease-positive association to DRB 1*0405 haplotypes carrying the susceptibility DQB 1*0302 or DQB 1*0201 alleles but not the protective DQB 1*0301 allele. Haplotype analysis not only suggests that the DRB 1 and DQB1 loci influence IDDM risk in the same way, but also that the HLA-linked protection is “dominant” compared with “susceptibility.” These results, obtained from a population with one of the highest IDDM incidences in the world, define more clearly the contribution of the various HLA loci to IDDM protection or susceptibility and allow a more precise calculation of AR.  相似文献   

9.
We explored the contribution of non-class II HLA loci to type 1 diabetes genetic susceptibility in the Finnish population. We analyzed 11 markers covering a 4-Mb region telomeric to the DQB1 gene in Finnish nuclear families with parents carrying either the DR8-DQB1*04 (n=188) or the DRB1*0404-DQB1*0302 haplotypes (n=135). On the DRB1*0404-DQB1*0302 haplotype we found independent disease association of the D6S273 and C125 markers (p(corr) = 10(-4) and 0.0095, respectively). The C125*200 alleles on this haplotype conferred an increased disease risk (OR = 3.6; p = 0.003). The B*39 allele also showed disease association (OR = 2.6; p = 0.054). The C125*200 allele appeared at an increased frequency also on transmitted B39 positive DRB1*0404-DQB1*0302 haplotypes, suggesting an independent effect. In addition, the C143*417 allele on the DRB1*08-DQB1*04 haplotype was associated with decreased disease risk (OR = 0.48, p = 0.003). Our data confirm that non-class II HLA loci affect genetic susceptibility to type 1 diabetes. In addition to HLA B*39 the C125 locus contributes to disease risk on the Finnish DRB1*0404-DQB1*0302 haplotypes. Another locus close to D6S273 may also have an effect. For the first time we report that a locus near the C143 marker appear to affect disease association of the DRB1*08-DQB1*04 haplotype.  相似文献   

10.
HLA-DQ genes are the main inherited factors predisposing to IDDM. This gene region harbors long terminal repeat (DQ LTR) elements of the human endogenous retrovirus HERV-K, which we analyzed for a possible association with disease. We first investigated whether LTR segregate with DQ alleles in families. Members (n = 110) of 29 families with at least one diabetic child, unrelated patients with IDDM (n = 159), and healthy controls (n = 173) were analyzed. Genomic DNA was amplified for DQ LTR3 by a nested primer approach as well as for DQA1 and DQB1 second exons, to assign DQA1 and DQB1 alleles. DQ LTR segregated in 24 families along with DQ alleles. Of the 29 families, 20 index patients were positive for DQ LTR. The DQ LTR was in all patients on the haplotype carrying the DQA1 *0301 and DQB1 *0302 alleles. A majority of patients had DQ LTR (62%) compared with controls (38%) (p < 1.3 × 10− 5), even after matching for the high-risk alleles DQA1 *0501, DQB1 *0201-DQA1 *0301, and DQB1 *0302 (79% of patients and 48% of controls; p < 0.02). Subtyping for DRB1 *04 alleles in all DQB1 *0302 + individuals showed 56% DRB1 *0401, DQB1 *0302 [LTR+ patients vs. 29% controls with the same haplotype (p < 0.002). In conclusion, these data demonstrate the segregation of DQ LTR with DQA1, DQB1 alleles on HLA haplotypes. Furthermore their presence on DRB1 *0401-, DQA1 *0301-, and DQB1 *0302-positive haplotypes suggest that they contribute to DQ-related susceptibility for IDDM. Human Immunology 50, 103–110 (1996)  相似文献   

11.
The frequencies of autoantibodies against glutamic acid decarboxylase 65 (GAD65) and islet cell antigen (ICA) 512/IA-2 (512/IA-2) are functions of the specific human leukocyte antigen (HLA) in type 1 diabetes mellitus (T1D). We investigated the association of HLA class II (DR and DQ) alleles and haplotypes with the presence of GAD and IA-2 autoantibodies in T1D. Autoantibodies were tested in 88 Tunisian T1D patients and 112 age- and gender-matched normoglycemic control subjects by enzyme immunoassay. Among T1D patients, mean anti-GAD antibody titers were higher in the DRB1*030101 allele (P < 0.001), together with the DRB1*030101/DQB1*0201 (P < 0.001) and DRB1*040101/DQB1*0302 (P = 0.002) haplotypes, while lower anti-GAD titers were associated with the DRB1*070101 (P = 0.001) and DRB1*110101 (P < 0.001) alleles and DRB1*070101/DQB1*0201 (P = 0.001) and DRB1*110101/DQB1*030101 (P = 0.001) haplotypes. Mean anti-IA-2 antibody titers were higher in the DRB1*040101 allele (P = 0.007) and DRB1*040101/DQB1*0302 (P = 0.001) haplotypes but were lower in the DRB1*110101 allele (P = 0.010) and the DRB1*110101 (P < 0.001) and DRB1*110101/DQB1*030101 (P = 0.025) haplotypes. Multinomial regression analysis confirmed the positive association of DRB1*030101 and the negative association of DRB1*110101 and DQB1*030101, along with the DRB1*070101/DQB1*0201 and DRB1*110101/DQB1*030101 haplotypes, with anti-GAD levels. In contrast, only the DRB1*040101/DQB1*0302 haplotype was positively associated with altered anti-IA-2 titers. Increased GAD65 and IA-2 antibody positivity is differentially associated with select HLA class II alleles and haplotypes, confirming the heterogeneous nature of T1D.  相似文献   

12.
HLA-DRB1 and -DQB1 genes were analyzed in 98 Chinese IDDM patients and 205 control subjects from Taiwan. The DRB1*0301-DQB1*0201 haplotype conferred strong susceptibility (RR = 7.7, pc < 10−5). DRB1*0405 also conferred susceptibility (RR = 3.1, pc < 0.0005) whereas DRB1*0403 (RR = 0.7) and DRB1*0406 (RR = 0.2) conferred protection. Indeed, the relative risk for the DRB1*0405-DQB1*0302 haplotype (RR = 33.7, pc < 0.002) was 48 and 168 times higher than those conferred by the DRB1*0403-DQB1*0302 and DRB1*0406-DQB1*0302 haplotypes, respectively, suggesting that the protection conferred by DRB1*0403 and 0406 is dominant over DQB1*0302. The strong linkage disequilibrium observed between DQB1*0302 and DRB1*0403(0406) can thus explain the surprising finding that the frequency of DQB1*0302 was not significantly increased in the Chinese IDDM patients (RR = 0.9). Because the DRB1*0405-DQB1*0302 haplotype (RR = 33.7) conferred higher susceptibility than the DRB1*0405-DQB1*0401 (RR = 2.5) or DRB1*0405-DQB1*0301 (RR = 2.1) haplotypes, DQB 1*0302 is indeed a susceptibility factor, while both DQB1*0301 and DQB1*0401 may confer protection against IDDM. The increased frequency of the protective DQB1*0401 allele in patients compared to controls is due to linkage disequilibrium between DRB1*0405 and DQB1*0401. Interestingly, the previously demonstrated protective effect of DQB1*0602 was not very strong in the Chinese (RR = 0.4). Our results suggested that HLA-encoded susceptibility to IDDM is determined by the combined effects of all DR and DQ molecules present in an individual. Therefore, the genotypic combinations of DR and DQ genes as well as their linkage disequilibria can influence IDDM susceptibility. At least four DR and DQ molecules conferring high susceptibility (DRB1*0301, DRB1*0405, and DQ/β0301/0201 and 0301/0302) occur at high frequency in the Chinese population. However, linkage disequilibria between highly susceptible DR and protective DQ or vice versa (e.g., DRB1*0405-DQB1*0301(0401] and DRB1*0403[0406]-DQB1*0302) are probably responsible for the lower incidence of IDDM in the Chinese.  相似文献   

13.
The association of HLA-DRB1 and DQB1 genes with IDDM in Koreans was assessed using 115 IDDM patients and 140 nondiabetic controls. DQB1*0201 is the only DQB1 allele positively associated with IDDM while DQB1*0602, *0601 and *0301 are negatively associated. Three DRB1 alleles (DRB1*0301, DRB1*0407 and DRB1*0901) are positively associated while four DR allele groups (DRB1*15, DRB1*12, DRB1*10 and DRB1*14) are negatively associated. However, Haplotype analyses indicated that DQB1*0302, DRB1*0405 and DRB1*0401 may confer susceptibility because the DRB1*0405-DQB1*0302 and DRB1*0401-DQB1*0302 haplotypes are positively associated with the disease. The lack of association in Koreans with the DQB1*0302 allele, which appears predisposing in studies of non-Orientals, is due to its strong linkage disequilibrium (LD) with the protective DRB1*0403 and *0406 alleles, while the lack of association with DRB1*0405 is because of its strong LD with the protective DQB1*0401 allele. Nine DR/DQ genotypes confer significantly increased risk to IDDM. Seven of the nine genotypes (DR3/4s, DR1/4s, DR4s/13, DR4s/8, DR4s/7, DR9/13 and DR3/9) were also found to be at high risk to IDDM in other populations, while the two others (DR1/9 and DR9/9) are only found in Koreans. Surprisingly, DR4/4 homozygotes are not associated with high risk to IDDM in Koreans. This observation can be explained by the high frequency of protective DR4 subtypes and the protective DQ alleles (0301 and 0401) associated with the susceptible DR4 alleles. Our analyses indicate that the counterbalancing act between susceptible DRB1 and protective DQB1, and vice versa, that has already been observed in Chinese and Japanese, is the major factor responsible for the low incidence of diabetes in Koreans.  相似文献   

14.
Abstract: In this study we characterized the haplotypes found in IDDM patients that normally confer resistance to the disease in order to localize the polymorphisms relevant for the protection. We studied 15 DR2-positive subjects with IDDM for their DRB1, DRB5 and DQB1 genes using RFLP, polymerase chain reaction (PCR), oligonucleotide typing, and in some specific cases direct sequencing after allele-specific PCR. In addition we analyzed 39 DR2-positive, IDDM non-associated haplotypes representing those haplotypes that are not inherited to probands and hence are present only in healthy family members. The frequency of the DRB1*1501-DRB5*0101-DQB1*0602 haplotype was slightly decreased among diabetic patients (80% vs. 92%). In addition, two unconventional haplotypes DRB1*1501-DRB5*0101-DQB1*05031 and DRB1*1501-DRB5*0101-DQB1*0502 were found in patients with IDDM while all the control ones were conventional. The sequencing of the DQB1*0602 allele present in IDDM haplotypes showed no differences when compared to the controls. These results support the primary but not absolute role of DQ in the protection against IDDM. An additional role of factors centromeric to DQB1 gene was suggested by findings based on the biallelic TaqI RFLP polymorphism of the DQA2 gene. All DR2-DQB1*0602 IDDM haplotypes were associated with the 2.1-kb fragment while in the control group the 2.1-kb and 1.9-kb fragments were evenly distributed.  相似文献   

15.
Abstract: Previous studies have indicated that certain alleles of HLA-DR and -DQ genes were strongly associated with susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM), and the role of DQ molecule in IDDM has been suggested. To further clarify the association of DQ alleles with IDDM, we determined the nucleotide sequences of full-length cDNA from 13 DQA1 alleles and 14 DQB1 alleles. The sequencing analysis revealed sequence polymorphisms outside the hypervariable region of DQ genes. We then analyzed the DQA1 and DQB1 polymorphisms along with that of DRB genes in 86 B-lymphoblastoid cell lines (B-LCLs) from various ethnic groups and in healthy unrelated Japanese and Norwegian individuals. The allelic and haplotypic distributions in each population revealed the characteristic haplotypic formation in the HLA class II region. HLA genes in 139 Japanese and 100 Norwegian IDDM patients were analyzed. DQB1*0301 was negatively associated with IDDM in both ethnic groups, irrespective of associated DRB1 and DQA1 alleles. In DQB1*0302 positive populations, which represented a positive association with IDDM in both ethnic groups, DRB1*0401, *0404, *0802 haplotypes increased in the patients, whereas DRB1*0406 haplotype decreased. Considering about the hierarchy in DRB1 alleles with IDDM susceptibility (DRB1*0401>*0404>*0403 in Norwegian and DRB1*0802>*0403>*0406 in Japanese), the genetic predisposition to IDDM is suggested to be defined by the combination of DR-associated susceptibility and DQ-associated susceptibility and by the DQ-associated resistance which is a dominant genetic trait.  相似文献   

16.
Genetic susceptibility to insulin-dependent diabetes mellitus (IDDM) has been shown to be associated with MHC in many studies. To extend this data with a population with relatively low IDDM incidence, MHC DRB, DQA, and DQB have been investigated by polymerase chain reaction and sequence specific oligonucleotide probe hybridization (PCR/SSO) in 178 IDDM patients from Turkey and compared to 248 healthy controls. Significant differences are detected between IDDM and control groups in the frequencies of DRB1*0402 DQA1*03 DQB1*0302 (28.1% vs. 5.2%, p < 0.0001, OR: 7.1) and DRB1*0301 DQA1*0501 DQB1*02 (57% vs. 18.1%, p < 0.0001, OR: 6.1). Among the negative associations, the most strong ones are with DRB1*1401 DQA1*0101 DQB1*0503 (0.6% vs. 8.9%, p < 0.0001, OR: 0.1), DRB1*1502 DQA1*0103 DQB1*0601 (1.1% vs. 7.7%, p = 0.0023, OR: 0.1), DRB1*1301 DQA1*0103 DQB1*0603 (0.6% vs. 6.9%, p = 0.0039, OR: 0.2) and DRB1*1101 DQA1*0501 DQB1*0301 (3.9% vs. 12.1%, p < 0.0001, OR: 0.2). When the DRB, DQA or DQB genotypes of the susceptible alleles are compared, the most strong susceptibility marker of the disease is found to be DRB1*0301/*04 (31.4% vs. 2.8%, p < 0.0001, OR: 15.8) and among these, heterozygote genotype DRB1*0301/*0401 (4.5% vs. 0, p = 0.0008, OR: 24.8).These results confirm the positive associations with IDDM previously observed in other Caucasian populations and reveal many negative and strong associations which maybe underlining several characteristics that distinguish Turkish diabetics form other Caucasians.  相似文献   

17.
The association of HLA class II alleles with multiple sclerosis (MS) has been amply documented. In the present study, the role of HLA class II (DRB1, DQA1 and DQB1) alleles and haplotypes was investigated in 43 unrelated Iranian chronic progressive multiple sclerosis (CP-MS) patients compared with 100 healthy individuals. HLA typing for DRB1, DQA1 and DQB1 was performed by restriction fragment length polymorphism (RFLP). Subtypes of DR4, DR15 and DR16 were defined using polymerase chain reaction (PCR) amplification with sequence-specific primers (PCR-SSP). The results show that, among DR2-positive MS patients and the control group, a positive association with the DRB1*1503, DQA1*0102, DQB1*0602 haplotype (21% vs. 2.7%, P=0.057, RR=9.8) and a negative association with the most frequent DR15 haplotype in the control group, DRB1*15021, DQA1*0103, DQB1*0601 (7% vs. 24.3%, P=0.001), were observed. No significant association was found with the analysed HLA-DRB1, DQA1 and DQB1 alleles.  相似文献   

18.
Type 1 (insulin-dependent) diabetes mellitus is associated with HLA DR and DQ factors, but the primary risk alleles are difficult to identify because recombination events are rare in the DQ–DR region. The risk of HLA genotypes for type 1 diabetes was therefore studied in more than 420 incident new onset, population-based type 1 diabetes children and 340 age, sex and geographically matched controls from Sweden. A stepwise approach was used to analyse risk by relative and absolute risks, stratification analysis and the predispositional allele test. The strongest relative and absolute risks were observed for DQB1*02-DQA1*0501/DQB1*0302-DQA1*0301 heterozygotes (AR 1/46, P < 0.001) or the simultaneous presence of both DRB1*03 and DQB1*0302 (AR 1/52, P < 0.001). Stratification analysis showed that DQB1*0302 was more frequent among DRB1*04 patients than DRB1*04 controls (P < 0.001), while DRB1*03 was more frequent among both DQA1*0501 (P < 0.001) and DQB1*02 (P < 0.001) patients than respective controls. The predispositional allele test indicated that DRB1*03 (P < 0.001) would be the predominant risk factor on the DRB1*03-DQA1*0501-DQB1*02 haplotype. In contrast, although DQB1*0302 (P < 0.001) would be the predominant risk factor on the DRB1*04-DQA1*0301-DQB1*0302 haplotype, the predispositional allele test also showed that DRB1*0401, but no other DRB1*04 subtype, had an additive risk to that of DQB1*0302 (P < 0.002). It is concluded that the association between type 1 diabetes and HLA is due to a complex interaction between DR and DQ since (1) DRB1*03 was more strongly associated with the disease than DQA1*0501-DQB1*02 and (2) DRB1*0401 had an additive effect to DQB1*0302. The data from this population-based investigation suggest an independent role of DR in the risk of developing type 1 diabetes, perhaps by providing diseases-promoting transcomplementation molecules.  相似文献   

19.
HLA class II association with insulin-dependent diabetes mellitus (IDDM) is well established but is still difficult to map to a particular locus. Polymorphism of the genes coding for transporter associated with antigen processing (TAP1 and TAP2), and located in the HLA class II region, was studied in 167 IDDM patients (116 adult-onset and 51 childhood-onset patients) and 98 normal controls using oligotyping after genomic amplification. A dominant protective effect was observed for theTAP2*0201 allele [relative risk (RR)=0.3, corrected probability (pc) < 0.001]. Conversely, susceptibility to IDDM was associated with apparent homozygosity for the TAP2*0101 allele (RR=3.4, pc < 0.001). Protection was independent from but additive to the protection conferred by the DRB1*02 DQB1*0602 haplotype (RR=0.06, pc<0.05), and antagonistic to the DRB1*03 DQB1*0201 and DRB1*04 DQB 1*0302 haplotypes predisposing effect (RR=1.1, not significant), arguing in favor of an absence of linkage disequilibrium between TAP2 and HLA class II genes. This was assessed by x2 analysis. TAP1 allelic distribution was not different among diabetics and controls. A significant association was observed between the presence of TAP2*0101 and that of islet cell antibodies (p < 0.05). These data suggest that the TAP2 gene, which encodes protein required for delivery of antigen peptides to class I molecules in the endoplasmic reticulum, could modulate the autoimmune response leading to β cell destruction. From a practical point of view, they make the combined screening of HLA class II and TAP2 loci a highly valuable tool in IDDM prediction.  相似文献   

20.
The prevalence of human leukocyte antigen (HLA) DQB1 and DQA1 alleles has been determined in 78 Kuwaiti Arab children with insulin-dependent diabetes mellitus (IDDM) and in 57 normal healthy controls with similar ethnic background. The typing of HLA-DQ alleles was carried out using an allele-specific DNA-based polymerase chain reaction (PCR) SSP method. DR typing was also performed in 212 control subjects using PCR-SSP (sequence specific primer) method. A significantly higher frequency of DQB1*0201 allele was found in IDDM cases compared to the controls (p<0.001). There was no significant difference in the prevalence of DQB1 alleles *0302, *0501, and *0602 between IDDM cases and the controls. In contrast, DQB1 alleles *0301, *0402, *0502, *0602, and *0603 were represented at a somewhat higher frequency in controls compared to the IDDM cohort. The frequency of DQA1 allele *0301, which encode for an Arg at codon 52, was significantly higher in the IDDM patients compared to the controls (p<0.001). The frequency of DQA1 allele *0302 was also higher in IDDM cases than controls (p = 0.034) but the difference was less pronounced than DQA1*0301. Amongst the Arg52 alleles, no significant difference was detected in the frequency of *0401 between IDDM cases and the controls and the allele *0501 was detected only in controls. For non-Arg52 alleles *0103, *0104, and *0201, the differences in the two groups were not significant, with the exception of allele *0104 (p = 0.024). DR3 was the most common type in the Kuwaiti general population (28%) and DRB1*0301 was detected in 41% of the individuals with DR3 specificity. Analysis of HLA-DQBI/DQA1 haplotypes from IDDM cases and controls revealed a significantly high frequency of haplotype DQA1*0301/DQB1*0201 between Kuwaiti IDDM cases (49/78, 63%) and the controls (8/57, 14%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号