首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of the benthic amphipod Diporeia spp. have sharply declined since the early 1990s in all North America's Great Lakes except Lake Superior. The onset and continued decline coincides with the invasion of these lakes by zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels and the spread of quagga mussels to deep habitats. The six deepest Finger Lakes of central New York (Seneca, Cayuga, Skaneateles, Canandaigua, Keuka, and Owasco) have historically been Diporeia habitat and have had dreissenids for more than a decade. These lakes represent a wide range of trophic state, maximum depth, and dreissenid invasion history. We hypothesized that Diporeia abundance would be negatively impacted by dreissenid mussel expansion in the Finger Lakes. During 2006–2010, we sampled Diporeia and mussel populations in these six lakes. Diporeia was present in all six lakes, and was abundant (2000/m2) in Owasco Lake that has only zebra mussels and in Cayuga and Seneca Lakes that have had zebra and quagga mussels since 1994. Diporeia abundance was lowest (1000/m2) in Skaneateles, Canandaigua, and Keuka Lakes where quagga mussels have recently expanded. Productivity indicators explained much of the variability of Diporeia abundance. The persistence of Diporeia with quagga mussels in these lakes may be because of available alternative food resources. Fatty acid tracers indicate that Diporeia from Owasco Lake, the lake without quagga mussels, utilize diatoms, but Diporeia from Cayuga Lake that coexist with abundant quagga mussels also use food resources associated with terrestrial detritus that cannot be intercepted by dreissenids.  相似文献   

2.
The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time. We used multivariate community analyses to examine temporal changes in community composition over the last 54 years and to assess the major drivers of long-term changes in benthos. The benthic community of Lake Ontario underwent significant transformations that correspond with three major periods. The first period, termed the pre/early Dreissena period (1964–1990), was characterized by high densities of Diporeia, Sphaeriidae, and Tubificidae. During the next period defined by zebra mussel dominance (the 1990s) the same groups were still prevalent, but at altered densities. In the most recent period (2000s to present), which is characterized by the dominance and proliferation of quagga mussels deeper into the lake, the community has changed dramatically: Diporeia almost completely disappeared, Sphaeriidae have greatly declined, and densities of quagga mussels, Oligochaeta and Chironomidae have increased. The introduction of invasive dreissenids has changed the Lake Ontario benthic community, historically dominated by Diporeia, Oligochaeta and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Dreissenids, especially the quagga mussel, were the major drivers of these changes over the last half century.  相似文献   

3.
Lake Michigan benthic macrofauna have been studied for almost a century, allowing for a unique analysis of long-term changes in community structure. We examined changes in abundances of three major taxonomic groups of benthic macroinvertebrates (Diporeia, Oligochaeta, and Sphaeriidae) in southern Lake Michigan from 1931 to 2015 and identified the most likely causes for these changes. Abundances of all three groups increased during 1931–1980 with the bulk of these increases occurring in nearshore (≤50 m) waters and coincident with increased loading of phosphorus (P) and subsequent increased primary production. Abundances of all three taxa declined during 1980–2000 again mostly in nearshore waters and coincident with decreased P loading. The quagga mussel (Dreissena rostriformis bugensis) invasion was associated with a further decline in phytoplankton primary production during 2000–2015. Both Diporeia and Sphaeriidae declined in abundance during that time, with Diporeia exhibiting the more pronounced decrease of the two groups. In contrast, Oligochaeta increased in abundance during 2000–2015. The quagga mussel has become, by far, the most abundant benthic macroinvertebrate species in terms of density and biomass. Overall, the primary driver of changes in the abundances of the three major taxa during this 85-year period appeared to be changes in phytoplankton primary production due to changing P loadings and, later in the time series, Dreissena filtering. The dreissenid mussels invasions coincided with a rapid decline of Diporeia abundance, but the mechanism of this negative effect remains unidentified. In contrast, Oligochaeta likely benefited from the quagga mussel invasion, perhaps via quagga-generated food supply.  相似文献   

4.
Diporeia spp. were a key component of the Great Lakes benthos, converting the pelagic algal rain to secondary production, which is critical for Great Lakes fishes. However, Diporeia declines since the 1980s have been rapid and widespread. While there are temporal relationships between Diporeia declines and spread of zebra and quagga mussels, establishing a mechanistic link has been difficult. Diporeia declines may result from competition for food resources with dreissenid mussels; however, conflicting evidence suggests food limitation may not be the direct link. To test food limitation, we analyzed gut contents of Diporeia collected between the 1980s and 2009 from two deep (>100 m) and one nearshore station (~50 m depth) in southern Lake Michigan. We further analyzed sediment cores from the same stations to resolve relationships among food resources, Diporeia diet, and diet selectivity during pre- and post-dreissenid invasion. In spring, pre-dreissenid Diporeia fed selectively and exclusively on large (Stephanodiscus) and filamentous centric diatoms (Aulacoseira). Diporeia diets showed significant shifts during the 2000s to greater proportions of small centric and araphid diatoms, coincident with Diporeia declines and offshore expansion of quagga mussels. Sediment cores recorded declines in Aulacoseira and large Stephanodiscus from 1960 to 2009 and increases in small centrics after dreissenid introduction. Accounting for high selectivity in springtime Diporeia diets, community changes in sediment records are consistent with changes observed in Diporeia diets and suggest Diporeia declines have been exacerbated by a shift from more nutritious and highly preferred diatom species to less nutritious and negatively selected species.  相似文献   

5.
Although the typical interaction between non-native invasive species and native species is considered to be negative, in some cases, non-native species may facilitate native species. Zebra and quagga mussels (Dreissena spp.) are aggressive invaders in freshwater systems, and they can alter energy flow by diverting nutrients from pelagic to benthic food-webs. In the last two decades, quagga mussels have largely replaced zebra mussels in shallow regions of the Laurentian Great Lakes and colonized deeper waters previously devoid of all dreissenids. Here, we aim to characterize potential positive effects of dreissenids in relation to depth on the benthic community in lakes Michigan and Huron. For this study, we used benthic survey data collected from Lake Michigan in 2015 and Lake Huron in 2017 and annual U.S. EPA Great Lakes National Program Office Long-term Biology Monitoring Program data for both lakes from 1998 to 2019. Benthic species richness and abundance (excluding dreissenids) in both lakes were almost three-fold higher in the nearshore (<70 m) compared to offshore (>70 m) communities. We found that, even though abundance of benthic invertebrates decreased with increased depth, total benthos density and biomass were higher in the presence than in the absence of quagga mussels in both lakes. Moreover, increased quagga mussel density and biomass with depth offset the lower benthos density and biomass at deeper depths, and samples with dreissenids had high densities of oligochaetes in both nearshore and offshore communities. These patterns are consistent with facilitative effects of quagga mussels on both shallow and deep-water benthic communities.  相似文献   

6.
Invasive species have had major impacts on the Great Lakes. This is especially true of exotic dreissenid mussels which are associated with decreased abundance of native macroinvertebrates and changes in food availability for fish. Beginning in 2001, we added a benthic macroinvertebrate survey to the USGS-Great Lakes Science Center's annual fall prey fish assessment of Lake Huron to monitor abundance of macrobenthos. Mean abundance of Diporeia, the most abundant benthic taxon in Lake Huron reported by previous investigators, declined greatly between 2001 and 2007. Diporeia was virtually absent at 27-m sites by 2001, decreased and was lost completely from 46-m depths by 2006, but remained present at reduced densities at 73-m sites. Dreissenids in our samples were almost entirely quagga mussels Dreissena bugensis. Zebra mussels Dreissena polymorpha were virtually absent from our samples, suggesting that they were confined to nearshore areas shallower than we sampled. Loss of Diporeia at individual sites was associated with arrival of quagga mussels, even when mussel densities were low. Quagga mussel density peaked during 2002, then decreased thereafter. During the study quagga mussels became established at most 46-m sites, but remained rare at 73-m sites. Length frequency distributions suggest that initial widespread recruitment may have occurred during 2001–2002. Like other Great Lakes, Lake Huron quagga mussels were associated with decreased abundance of native taxa, but negative effects occurred even though dreissenid densities were much lower. Dreissenid effects may extend well into deep oligotrophic habitats of Lake Huron.  相似文献   

7.
The benthic amphipod Diporeia is an ecologically and biogeochemically important constituent of deep freshwater lakes in North America. The proliferation of dreissenid mussels in the mid-1990s coincided with a sharp decrease in Diporeia populations in several Laurentian Great Lakes; however the ultimate cause and mechanisms of their decline are still unknown. Here we examined the composition of DNA viruses associated with Diporeia collected from populations of Lake Michigan that had declined and stable populations in Lake Superior and Owasco Lake (Finger Lake in central New York State). Viral metagenomic libraries from Owasco Lake and Lake Superior were comprised primarily of bacteriophages, which may infect bacteria within the amphipod microbiome. In contrast, the metagenomic library from Lake Michigan contained well-represented ssDNA circular viral genomes. The prevalence and viral load of one putative Type V ssDNA circular virus (LM29173) that recruited almost 30% of total viral sequence reads in the Lake Michigan library was analyzed by quantitative PCR. The prevalence of LM29173 was over two orders of magnitude greater in Lake Michigan compared to the other two lakes. Although further research is necessary to establish the pathology and epidemiological extent of viral-Diporeia interactions, our data suggest that viruses may be numerically significant constituents of the Diporeia microbiome, and if pathogenic some of these viruses may be a stressor of Great Lakes Diporeia populations. Our data further indicate that special attention should be given to the circovirus that was prevalent in the declining Michigan population but uncommon in the other two lakes.  相似文献   

8.
Dreissenid mussels have been regarded as a “dead end” in Great Lakes food webs because the degree of predation on dreissenid mussels, on a lakewide basis, is believed to be low. Waterfowl predation on dreissenid mussels in the Great Lakes has primarily been confined to bays, and therefore its effects on the dreissenid mussel population have been localized rather than operating on a lakewide level. Based on results from a previous study, annual consumption of dreissenid mussels by the round goby (Neogobius melanostomus) population in central Lake Erie averaged only 6 kilotonnes (kt; 1 kt = one thousand metric tons) during 1995–2002. In contrast, our coupling of lake whitefish (Coregonus clupeaformis) population models with a lake whitefish bioenergetics model revealed that lake whitefish populations in Lakes Michigan and Huron consumed 109 and 820 kt, respectively, of dreissenid mussels each year. Our results indicated that lake whitefish can be an important predator on dreissenid mussels in the Great Lakes, and that dreissenid mussels do not represent a “dead end” in Great Lakes food webs. The Lake Michigan dreissenid mussel population has been estimated to be growing more than three times faster than the Lake Huron dreissenid mussel population during the 2000s. One plausible explanation for the higher population growth rate in Lake Michigan would be the substantially higher predation rate by lake whitefish on dreissenid mussels in Lake Huron.  相似文献   

9.
Understanding dreissenid mussel population dynamics and their impacts on lake ecosystems requires quantifying individual growth across a range of habitats. Most dreissenid mussel growth rates have been estimated in nutrient rich or nearshore environments, but mussels have continued to expand into deep, cold, low-nutrient habitats of the Great Lakes. We measured annual quagga mussel (Dreissena rostriformis bugensis) growth at 15 m, 45 m, and 90 m in Lake Ontario using caged mussels near Oswego, New York, USA from June 2018 to May 2019. Quagga mussel growth (starting size 12 mm) was greatest at 15 m (mean shell length increase = 10.2 mm), and was lower at 45 m (5.9 mm) and 90 m (0.7 mm). Caged mussels were obtained from near the 90-m site and those reared at 15 and 45 m developed thicker shells than those that were caged at 90 m. We observed relatively high colonization by quagga and, to a lesser degree, zebra mussels (Dreissena polymorpha) at 15 m, very few colonizers at 45 m, and none at 90 m. Higher growth potential, but low natural mussel densities observed at 15 m and 45 m suggest factors other than growth limit dreissenid abundance at these depths. The relatively slow dreissenid growth rates observed in offshore habitats are consistent with the gradual abundance increases documented in these zones across the Great Lakes and suggest new mussels that become established in these habitats may contribute to ecosystem effects for decades.  相似文献   

10.
We examined three decades of changes in dreissenid populations in Lake Ontario and predation by round goby (Neogobius melanostomus). Dreissenids (almost exclusively quagga mussels, Dreissena rostriformis bugensis) peaked in 2003, 13 years after arrival, and then declined at depths <90 m but continued to increase deeper through 2018. Lake-wide density also increased from 2008 to 2018 along with average mussel lengths and lake-wide biomass, which reached an all-time high in 2018 (25.2 ± 3.3 g AFTDW/m2). Round goby densities were estimated at 4.2 fish/m2 using videography at 10 to 35 m depth range in 2018. This density should impact mussel populations based on feeding rates, as indicated in the literature. While the abundance of 0–5 mm mussels appears to be high in all three years with measured length distributions (2008, 2013, 2018), the abundance of 5 to 12 mm dreissenids, the size range most commonly consumed by round goby, was low except at >90 m depths. Although the size distributions indicate that round goby is affecting mussel recruitment, we did not find a decline in dreissenid density in the nearshore and mid-depth ranges where goby have been abundant since 2005. The lake-wide densities and biomass of quagga mussels have increased over time, due to both the growth of individual mussels in the shallower depths, and a continuing increase in density at >90 m. Thus, the ecological effects of quagga mussels in Lake Ontario are likely to continue into the foreseeable future.  相似文献   

11.
Prior studies recognized the presence of a single dreissenid species in Lake Superior—the zebra mussel Dreissena polymorpha. However, taxonomic keys based on traditional shell morphology are not always able to differentiate dreissenid species with confidence. We thus employed genetic and morphological analyses to identify dreissenids in a major river-embayment of Lake Superior—the lower St. Louis River/Duluth-Superior Harbor—during 2005–2006. Our results revealed the presence of a second dreissenid species—the quagga mussel D. bugensis (alternatively known as D. rostriformis bugensis). Both species occurred in mixed clusters, in which zebra mussels outnumbered quagga mussels (20–160:1). The largest quagga mussel collected in 2005 was 26.5 mm long and estimated to be two years old, suggesting that the initial introduction occurred no later than 2003. Further monitoring is necessary to determine whether the quagga mussel will colonize Lake Superior. Our results indicate that the coupling of conventional morphological and molecular approaches is essential for monitoring dreissenid species.  相似文献   

12.
Dreissenid mussels are aggressive invasive species that are continuing to spread across North America and co-occur in the same waterbodies with increasing frequency, yet the outcome and implications of this competition are poorly resolved. In 2009 and 2015, detailed (700 + sample sites) surveys were undertaken to assess the impacts of invasive dreissenid mussels in Lake Simcoe (Ontario, Canada). In 2009, zebra mussels were dominant, accounting for 84.3% of invasive mussel biomass recorded. In 2015, quagga mussels dominated (88.5% of invasive mussel biomass) and had expanded into profundal (> 20 m water depth) sites and onto soft (mud/silt) substrates with a mean profundal density of 887 mussels/m2 (2015) compared to ~ 39 mussels/m2 in 2009. Based on our annual benthos monitoring, at a subset of ~ 30 sites, this shift from zebra to quagga mussels occurred ~ 2010 and is likely related to a population decline of zebra mussels in waterbodies where both species are present, as recorded elsewhere in the Great Lakes Region. As the initial invasion of dreissenid mussels caused widespread ecological changes in Lake Simcoe, we are currently investigating the effects this change in species dominance, and their expansion into the profundal zone, will have on the lake; and our environmental management strategies. Areas of future study will include: changes in the composition of benthos, fish, or phytoplankton communities; increased water clarity and reduction of the spring phytoplankton bloom; energy/nutrient cycling; and fouling of anthropogenic in-lake infrastructures (e.g. water treatment intakes) built at depths > 25 m to avoid previous zebra mussel colonization.  相似文献   

13.
The USGS-Great Lakes Science Center has collected dreissenid mussels annually from Lake Michigan since zebra mussels (Dreissena polymorpha) became a significant portion of the bottomtrawl catch in 1999. For this study, we investigated dreissenid distribution, body mass, and recruitment at different depths in Lake Michigan during 2001–2003. The highest densities of dreissenid biomass were observed from depths of 27 to 46 m. The biomass of quagga mussels (Dreissena bugensis) increased exponentially during 2001–2003, while that of zebra mussels did not change significantly. Body mass (standardized for a given shell length) of both species was lowest from depths of 27 to 37m, highest from 55 to 64 m, and declined linearly at deeper depths during 2001–2003. Recruitment in 2003, as characterized by the proportion of mussels < 11 mm in the catch, varied with depth and lake region. For quagga mussels, recruitment declined linearly with depth, and was highest in northern Lake Michigan. For zebra mussels, recruitment generally declined non-linearly with depth, although the pattern was different for north, mid, and southern Lake Michigan. Our analyses suggest that quagga mussels could overtake zebra mussels and become the most abundant mollusk in terms of biomass in Lake Michigan.  相似文献   

14.
Benthic monitoring by USGS off the southern shore of Lake Ontario from October 1993 to October 1995 provides a detailed view of the early stages of the decline of the native amphipod Diporeia. A loss of the 1994 and 1995 year classes of Diporeia preceded the disappearance of the native amphipod at sites near Oswego and Rochester at depths from 55 to 130 m. In succeeding years, Diporeia populations continued to decline in Lake Ontario and were nearly extirpated by 2008. Explanations for Diporeia's decline in the Great Lakes include several hypotheses often linked to the introduction and expansion of exotic zebra and quagga mussels (Dreissena sp.). We compare the timeline of the Diporeia decline in Lake Ontario with trends in two sources of organic matter to the sediments — spring diatom blooms and late summer whiting events. The 1994–95 decline of Diporeia coincided with localized dreissenid effects on phytoplankton in the nearshore and a year (April 1994 to May 1995) of decreased flux of organic carbon recorded by sediment traps moored offshore of Oswego. Later declines of profundal (> 90 m) Diporeia populations in 2003 were poorly associated with trends in spring algal blooms and late summer whiting events.  相似文献   

15.
Benthic communities in the Laurentian Great Lakes have been in a state of flux since the arrival of dreissenid mussels, with the most dramatic changes occurring in population densities of the amphipod Diporeia. In response, the US EPA initiated an annual benthic macroinvertebrate monitoring program on all five Great Lakes in 1997. Although historically the dominant benthic invertebrate in all the lakes, no Diporeia have been found in Lake Erie during the first 13 years of our study, confirming that Diporeia is now effectively absent from that lake. Populations have almost entirely disappeared from our shallow (< 90 m) sites in lakes Ontario, Huron, and Michigan. In Lake Ontario, three of our four deep (> 90 m) sites still supported Diporeia populations in 2009, with densities at those sites ranging between 96 and 198/m2. In Lake Michigan, populations were still found at six of our seven deep sites in 2009, with densities ranging from 57 to 1409/m2. Densities of Diporeia in 2009 at the four deep sites in Lake Huron were somewhat lower than those in Lake Michigan, ranging from 191 to 720/m2. Interannual changes in population size in Lake Huron and Lake Michigan have shown a degree of synchrony across most sites, with periods of rapid decline (1997-2000, 2003-2004) alternating with periods of little change or even increase (2001-2002, 2005-2009). There has been no evidence of directional trends at any sites in Lake Superior, although substantial interannual variability was seen.  相似文献   

16.
Vital to the Lake Superior food web, the amphipod Diporeia remains the dominant macroinvertebrate in Lake Superior despite drastic population declines throughout the rest of the Laurentian Great Lakes. Diporeia is most abundant in the slope region of the lake at water depths between 30 and 125 m. It has been hypothesized that this depth range is preferred because of elevated primary production and deposition within this zone. This hypothesis of food driving habitat preference has not been directly tested. Here we used 120-hour preference-avoidance trials to record Diporeia choice of sediments from different water depths, seasons, and other treatments. Most preferences were weak to absent; however, Diporeia strongly preferred sediment from 30- and 60-m water depths over deeper or shallower sites. Contrary to the hypothesis about food driving habitat choice, chemical characteristics did not explain this strong preference. Grain size variation was the only measured variable that was consistent between the sites preferred by Diporeia and different from unpreferred sites. Both the 30- and 60-meter sites contained predominantly medium silt but had a wider range in grain sizes. These results indicate that physical habitat characteristics may have a stronger bearing on Diporeia habitat preference than food availability and may account for their distribution in the lake. The results also may imply that the role of dreissenid mussels as ecosystem engineers altering sediment physical characteristics may be important where they are abundant.  相似文献   

17.
The freshwater amphipod Diporeia is a dominant macroinvertebrate species in Lake Superior’s benthic community and an important prey item for many fish. A capacity to predict growth and production rates of Diporeia using a bioenergetics model requires information on physiological processes of the species. The objective of this study is to quantify oxygen consumption of Lake Superior Diporeia and to determine if respiration rate changes with body length. Diporeia were collected from Lake Superior and kept over natural sediment maintained at 4 °C. Dissolved oxygen levels for groups of immature (2 mm), juvenile (4 mm), and adult (6 mm) Diporeia in 20 ml microcosms were measured using a polarographic microelectrode. Mass-specific respiration rates for Lake Superior Diporeia ranged from 32.0 to 44.7 mg O2 g DW 1 day −1. A significant relationship between body length and mass-specific respiration rate (p > 0.1) was not found. The estimate of Diporeia respiration presented here is significantly higher (p < 0.05) than previous findings from populations in Lakes Michigan and Ontario. This study provides new data on respiration rates of Lake Superior Diporeia and compares findings to studies for other connecting Great Lakes.  相似文献   

18.
Dreissenid mussels are known to disrupt the base of the food web by filter feeding on phytoplankton; however, they may also directly ingest zooplankton thereby complicating their effects on plankton communities. The objective of this study was to quantify the effects of quagga mussel feeding on the composition and size structure of Lake Michigan zooplankton assemblages. Two mesocosm (six 946 L tanks) experiments were conducted in summer 2013, using quagga mussels and zooplankton collected near Beaver Island, MI, to examine the response of zooplankton communities to the presence and absence of mussels (experiment 1) and varying mussel density (experiment 2). Mesocosms were sampled daily and zooplankton taxa were enumerated and sized using microscopy and FlowCAM® imaging. In experiment 1, the presence of quagga mussels had a rapid negative effect on veliger and copepod nauplii abundance, and a delayed negative effect on rotifer abundance. In experiment 2, mussel density had a negative effect on veliger, nauplii, and copepodite abundance within 24 h. Multivariate analyses revealed a change in zooplankton community composition with increasing mussel density. Ten zooplankton taxa decreased in abundance and frequency as quagga mussel density increased: except for the rotifer Trichocerca sp., treatments with higher mussel densities (i.e., 1327, 3585, and 5389 mussels/m2) had the greatest negative effect on small-bodied zooplankton (≤ 128 μm). This study confirms results from small-scale (≤ 1 L) experiments and demonstrates that quagga mussels can alter zooplankton communities at mesoscales (~ 1000 L), possibly through a combination of direct consumption and resource depletion.  相似文献   

19.
A concurrent decrease in lake whitefish (Coregonus clupeaformis) condition and Diporeia spp. abundance in Lake Michigan has spurred investigations into possible links between the two phenomena. We examined female lake whitefish δ13C and δ15N stable isotopes, growth, reproductive investment, dorsal muscle total lipid and docosahexaenoic acid (DHA) contents from lakes Erie, Michigan and Superior to determine whether differences in food source were correlated with measures of stock success. Stocks with higher somatic growth rates and mean reproductive potential had higher energy stores in terms of percent total lipid. Stocks with low muscle lipid concentration also had smaller egg sizes as egg number increased. Diet varied among stocks as evidenced by δ13C and δ15N stable isotope analyses; however, muscle total lipid and DHA were not correlated to apparent Diporeia spp. prey use. When compared to stocks from lakes Erie and Superior, Lake Michigan stocks had lower growth, reproduction, and lipid stores. While stocks in Lake Michigan with access to declining Diporeia spp. populations may still feed on the amphipod, it appears that they are unable to consume the quantities necessary to maintain historical growth and reproduction. Stable isotope analyses of lakes Erie and Superior stocks, with higher growth rates and lipid values, indicated different feeding strategies with no indication of reliance on Diporeia spp. While differences in prey resources may have an effect on lake whitefish stocks, differences in Diporeia spp. abundance alone cannot explain differences in lake whitefish condition observed among the Great Lakes included in this study.  相似文献   

20.
The Great Lakes Science Center has conducted lake-wide bottom trawl surveys of the fish community in Lake Michigan each fall since 1973. These systematic surveys are performed at depths of 9 to 110 m at each of seven index sites around Lake Michigan. Zebra mussel (Dreissena polymorpha) populations have expanded to all survey locations and at a level to sufficiently contribute to the bottom trawl catches. The quagga (Dreissena bugensis), recently reported in Lake Michigan, was likely in the catches though not recognized. Dreissena spp. biomass ranged from about 0.6 to 15 kg/ha at the various sites in 1999. Dreissenid mussels were found at depths of 9 to 82 m, with their peak biomass at 27 to 46 m. The colonization of these exotic mussels has ecological implications as well as potential ramifications on the ability to sample fish consistently and effectively with bottom trawls in Lake Michigan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号