首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
探索高性能、低成本、环境友好型电极材料一直是电化学储能领域的研究重点,其中,铁氧化物(FeOx:Fe3O4、α-Fe2O3、γ-Fe2O3)作为钠离子电池负极材料具有较大的应用潜力而受到广泛关注。然而,FeOx的电子和离子传导性较差,限制了循环稳定性和倍率性能,将其与碳基材料(石墨烯、石墨/无定型碳、多孔炭、碳纳米管和碳纳米纤维等)进行复合能够显著改善电化学性能。本文详细介绍了FeOx/碳基复合材料作为钠离子电池负极材料的研究现状。分析了导致FeOx负极材料首次库伦效率低、循环稳定性和倍率性能差等问题的原因,以及各复合改性结构的优势,对今后FeOx/碳基复合材料作为钠离子电池负极材料的研究方向进行了展望。  相似文献   

2.
近年来,TiO2作为钠离子电池(NIB)负极材料,因其低成本和高稳定性等优势受到广泛关注。但受TiO2本征电子导电性的固有限制,使得TiO2作为NIB负极材料导电性较差,导致其容量和倍率等性能不理想。利用海藻酸钠与金属离子自主交联反应的特性,将反应产物在最佳温度下进行简单碳化,制备了具有分级多孔结构的TiO2/C复合材料,其中TiO2纳米颗粒均匀地分布在多孔互连的碳基体中,该结构提升了复合材料导电性的同时扩展了钠离子反应的附着位点。将TiO2/C复合材料用于NIB负极材料,在100 mA·g-1的电流密度下循环300圈后,电池可逆比容量维持在180.4 mAh·g-1;进一步,在更高的1000 mA·g-1电流密度下经过1000次循环后,电池可逆比容量维持在102.3 mAh·g-1,充分显示出TiO2/C复合材料作为NIB负极材料的应用潜能。  相似文献   

3.
本工作报道了一种简单且成本低廉的水热方法合成了由碳包覆的高结晶度TiO2纳米棒构成的具有放射状类海胆结构的TiO2@C微米球复合材料(SUL-TiO2@C)钠离子电池负极材料。SUL-TiO2@C表现出多孔的类海胆状结构,由径向生长的金红石纳米棒和包覆其纳米棒的无序碳涂层组成。通过扫描电子显微镜和透射电子显微镜、X射线衍射仪、全自动氮吸附比表面积分析仪、拉曼光谱仪、X射线光电子能谱仪、电化学工作站和电池测试系统对无碳包覆的TiO2(记为SUL-TiO2)和SUL-TiO2@C进行表面形貌、晶体结构、比表面积、碳结构、表面元素组成和价态、赝电容行为、循环性能与倍率性能等分析对比,研究结果表明:本项目制备的SUL-TiO2@C复合材料具有更高比例的{110}面、更大的比表面积、更高比例的赝电容贡献、更大的放电比容量和优异的倍率性能。本工作的合成方法为钠离子电池负电极材料研究及未来的应用提供了参考价值和应用价值。  相似文献   

4.
钠离子电池由于其较低的成本在储能领域具有广阔的市场前景,但其缺乏具有更高倍率和更长寿命的正极材料,这阻碍了钠离子电池的实际应用。磷酸钒钠(Na3V2(PO4)3,NVP)被认为是一种很有前景的正极材料,然而其电化学性能受到其较低的电子电导率限制,且在宽电压范围内循环稳定性较差。本文通过涂抹工艺制备了复合正极NVP-MXene,MXene纸与活性浆料紧密连接使复合电极的接触电阻变小,增加了电子转移通道,提高了复合电极的循环性能和倍率性能。NVP-MXene复合正极在1 C电流下循环100圈容量衰减仅为27%,同时也表现出了良好的倍率性能(5 C大电流密度的比容量下是1C电流密度下的85.7%)。本研究对钠离子电池正极的设计提供了新的思路,为磷酸钒钠在钠离子电池的实际应用提供理论指导。  相似文献   

5.
崔瑜  王艳芝  陈召凡 《无机材料学报》2015,30(11):1218-1222
以钛酸丁酯为TiO2前驱体, 通过水热法制得TiO2/石墨烯复合物。使用X射线衍射(XRD)、热重分析(TG)、透射电镜(TEM)、扫描电镜(SEM)和电化学充放电等手段对材料进行了表征和分析。结果表明: TiO2颗粒均匀地分散在石墨烯的表面, 复合物中石墨烯的含量为24.67%。当该材料用作锂离子电池负极材料时, 在2C的放电倍率下, 首次放电容量为384.35 mAh/g, 循环100次后的放电容量为130.26 mAh/g, 是纯TiO2电极放电容量的2.93倍。与纯TiO2电极相比, TiO2/石墨烯复合物的电荷转移电阻较低。TiO2/石墨烯复合物具有较好的倍率性能和较高的电化学反应活性。  相似文献   

6.
相比于锂离子电池,钠离子电池具有资源丰富、分布广泛和成本低廉等优点,在大规模储能领域有广阔的应用前景,近几年获得了学术界广泛的关注。在钠离子电池体系中,负极材料对整个电池的能量密度和循环性能有着重要的影响。而在众多的负极材料中,尖晶石型钛酸锂凭借其优异的循环性能以及相对较高的钠离子脱嵌电位,被认为是一种极具应用潜力的钠离子电池负极材料。然而,由于钛酸锂中钛的最外层轨道缺少电子,导致钛酸锂的导电性不佳。同时,由于钠离子半径较大,在脱嵌过程中离子扩散阻力大,易引起钛酸锂晶格畸变,严重制约着钛酸锂的倍率性能和循环性能。针对上述问题,近年来研究者们基于深入的储钠机制研究,通过结构设计和界面优化,显著提升了钛酸锂在钠离子电池中的电化学性能。目前,文献报道的改善钛酸锂储钠性能的策略主要有:引入电导率较高的包覆层和离子掺杂来提高材料电子导电率,缓解嵌钠过程中的晶格畸变;通过结构调控设计纳米尺寸的钛酸锂材料以缩短离子扩散距离和增大其与电解液的接触面积。本文综述了近年来钛酸锂负极材料在钠离子电池中的研究现状,着重对钛酸锂的结构与性能、合成方法和改性研究等方面进行了深入的阐述,并对下一阶段钛酸锂作为钠离子电池负极的研究与应用进行了展望。  相似文献   

7.
TiO2纳米管阵列是一种比表面积大、光电催化性能高效稳定、成本低廉、无毒的新型半导体材料,在光催化降解污染物、光解水制氢和新能源电池等领域有着广阔的应用前景。但由于TiO2禁带宽度大,只能吸收紫外光,可见光利用率低,因此要对TiO2纳米管进行改性,拓宽其光谱吸收范围,提高其光电转换效率。综述了近年来TiO2纳米管阵列的制备、改性及应用等方面的研究进展。  相似文献   

8.
庄新蝶  全祖浩  周朋飞 《功能材料》2023,(1):1176-1180+1185
锂离子电池由于高能量密度和长循环寿命,被广泛应用在3C电子产品和电动汽车领域,但由于锂资源储量低、分布不均和较高的价格,使得锂离子电池在规模储能领域的应用受到限制。同时,钠离子电池凭借其较低的成本已逐渐发展为锂离子电池的替代品。但Na+较大的离子半径使得钠离子电池在实际中的应用受到限制,因此开发高性能储钠电极材料,成为钠离子电池的研究重点。采用溶胶凝胶法制备Ti掺杂隧道型Na0.55-MnxTi1-xO2作为钠离子电池正极材料,并对其电化学性能和充放电过程相结构演变进行探究。实验表明掺杂适量Ti元素有利于减轻Na+嵌入/脱出过程中晶格参数和相结构的变化,其中Na0.55Mn0.9Ti0.1O2材料表现出最佳的循环稳定性和倍率性能,同时该材料在低温为10℃时的首圈放电比容量为89.5 mAh·g-1,在循环300圈后,容量保持率为91.4%,表明隧道...  相似文献   

9.
钠离子电池(SIBs)因其成本低、安全性高等优势引起了愈加广泛的关注与研究。在已报道的SIBs负极材料中,磷由于理论容量极高被认为是最具应用前景的负极材料之一。然而磷的电导率低,且在充放电过程中会发生体积膨胀,极大地影响了其倍率性能和循环稳定性。将磷与锗、锡、铜等金属结合形成金属磷化物可有效提高其导电性,并显著改善磷基负极材料的倍率性能和循环性能。本文主要综述了金属磷化物及其与碳纳米管、石墨烯等复合材料作为SIBs负极的最新研究进展,总结了目前金属磷化物SIBs负极材料存在的问题,比如实际容量偏低、储钠机制研究不够深入等;提出了相应的解决方法和手段,例如复合材料设计和构筑、表面修饰、尺寸形貌调控和先进原位表征手段等;并对金属磷化物SIBs负极材料的发展前景进行了展望。  相似文献   

10.
谭毅  薛冰 《无机材料学报》2018,33(5):475-482
锂离子电池作为一种动力能源, 在电动汽车和各种储能系统中有着良好的应用前景。尖晶石结构的钛酸锂(Li4Ti5O12)负极材料具有较高的脱嵌锂电位平台、优异的循环稳定性、以及突出的安全性能, 被认为是一种非常有潜力的锂离子电池负极材料, 在锂离子动力电池中具有巨大的发展潜力。然而, 尖晶石型Li4Ti5O12存在着本征导电率低, 理论容量小等缺陷, 极大地限制了其规模化应用, 需要进一步改善和提高。本文总结了尖晶石型Li4Ti5O12材料在结构形貌、制备方法和性能方面的研究进展, 深入分析和讨论了离子掺杂、碳表面改性和纳米化等改性方法对尖晶石型Li4Ti5O12综合电化学性能的改善效果, 并展望了尖晶石型Li4Ti5O12作为锂离子电池负极材料未来的发展方向。  相似文献   

11.
非化学计量微米氧化硅(SiOx)由于其高理论容量和低成本,有望成为锂离子电池石墨负极材料的替代品.然而, SiOx的实际应用仍然受到其较差的固有导电性和循环过程中明显的体积变化的阻碍.在本工作中,为了同时解决这些问题,我们使用可规模化的溶剂热和热还原方法制备了具有TiO1-yNy-C涂层的SiOx基负极材料(SiOx@TiON-C).我们通过系统性研究发现, TiO1-yNy-C涂层可以适应SiOx循环过程中大的体积变化且有效提高其导电性.因此, SiOx@TiON-C负极具有突出的储锂性能.具体而言, SiOx@TiON-C负极可以在500 mA g-1的电流密度下循环500圈后仍保持750.2 mA h g-1的优异可逆容量, 75.1%的初始库仑效率和优异的倍率性能.这项工作为促进下一代锂离子电池微...  相似文献   

12.
王亮  杜瑞成 《化工新型材料》2023,(3):132-135+140
准备实验材料与实验仪器设备,制备0、0.1%、0.3%的TiO2光催化材料,将其标注为纯TiO2、0.1%浓度Ru的TiO2、0.3%浓度Ru的TiO2,测试金属Ru对TiO2孔径的影响、改性TiO2光催化材料紫外-可见光吸收性能和光催化反应性能。结果表明:改性TiO2光催化材料属于介孔类材料,当金属Ru掺入浓度较低时,TiO2材料性能不会受到影响,随着金属Ru掺入浓度增加,改性TiO2光催化材料的体积/孔径比增加;TiO2光催化材料紫外-可见光吸收性能、光催化降解与离子液体掺杂金属Ru浓度具有正相关关系,离子液体掺杂金属Ru浓度的不断增加,改性TiO2光催化材料紫外-可见光吸收能力与光催化降解率随之增加。  相似文献   

13.
锂离子电池作为一种绿色可充电电池, 具有较高的能量密度及功率密度, 但市售锂离子电池主要以有机物为电解液, 当电池过充或短路时存在一定的燃烧及爆炸风险。为应对此问题, 水系锂离子电池逐渐走进人们的视野, 它具有清洁环保、安全性能高等优点, 其工作电压为1.5~2.0 V, 主要应用于储能领域。考虑到水系电池的析氢析氧反应, 常规负极材料无法应用于水系锂离子电池, 因此水系锂离子电池的研发关键在于负极材料的选取。LiTi2(PO4)3具有开放的三维通道以及合适的嵌锂电位, 可以作为水系锂离子电池的负极材料。LiTi2(PO4)3的合成方法主要有高温固相法、溶胶-凝胶法和水热法等。为进一步提高LiTi2(PO4)3的电化学性能, 可以采用颗粒纳米化、形貌控制、元素掺杂及碳包覆等方式进行改性。本文从合成方法及改性手段的角度, 对近年来国内外水系锂离子电池负极材料LiTi2(PO4)3的研究进行综述, 并对LiTi2(PO4)3负极材料的发展前景做出展望。  相似文献   

14.
先采用高压静电纺丝技术制备二氧化钛/聚酰胺酸(TiO2/PAA)复合纤维膜,然后对其进行热亚胺化处理制备出二氧化钛/聚酰亚胺(TiO2/PI)复合纤维隔膜。使用扫描电子显微镜(SEM)、傅里叶红外光谱分析仪(FTIR)、热失重分析仪和电化学工作站测试了TiO2/PI复合纤维隔膜的基本性能和电化学性能,结果表明:隔膜具有明显的三维网状结构,与未改性的纯PI隔膜相比,改性后TiO2/PI复合纤维隔膜的拉伸强度、孔隙率和吸液率分别提高到16.74 MPa、77.5%和550%;其热收缩性能较好,整体电化学性能优异。制备的LiFePO4(磷酸铁锂正极)/TiO2/PI/C(石墨负极)电池具有优异的循环稳定性和高放电容量,在1 C条件下进行100个循环后,其库伦效率在25℃和120℃高达96.7%和90.7%。  相似文献   

15.
MXene由于具有独特的层状结构、高电子导电性和丰富的表面化学特性,在储能、电磁干扰屏蔽、催化、医药等方面有广泛的应用前景。Ti3C2Tx作为最早发现的MXene材料,其固有的金属导电特征、宽层间距和丰富的表面官能团,引起了钠离子电池领域研究人员的关注。本文综述了近年来Ti3C2Tx基材料在钠离子电池中的研究进展。首先从Ti3C2Tx材料的制备展开,概述多层和少层两类Ti3C2Tx材料的结构与电化学特性。随后结合研究的应用趋势,总结两类Ti3C2Tx材料的层间距改性、掺杂改性、形貌调控等手段对其储钠行为的影响。同时也分析了两类Ti3C2Tx基复合材料应用于钠离子电池负极的结构设计思路,指出合理的结...  相似文献   

16.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

17.
水溶性钠离子电池是一种与锂离子电池相辅相成的技术,因其相对较低的成本、改善的安全性和环境友好的电解液而备受青睐。然而,较低的电极容量限制了这种电池的应用。Na0.44MnO2是一种用于钠离子电池的高容量阴极材料,其理论容量为121 mAh/g。文章研究了Na0.44MnO2的尺寸效应对阴极性能的影响。纳米棒通过热处理MnO2纳米片前驱体制备而成,其尺寸通过CTAB和KMnO4的比例进行调控。然后,Na0.44MnO2纳米棒被用作水溶性钠离子电池的活性材料。纳米棒阴极在1 C的初始循环中提供了60 mAh/g的容量,并在经过200个循环后保持了55 mAh/g,比Na0.44MnO2块状阴极高出37.5%。在高倍率的5 C下,该阴极在经过200个循环后仍能提供47 mAh/g的高容量。容量的增加归因于减小的电荷传递阻抗和纳米棒具有较高比表面积所带来的改善的钠离子扩散性能。  相似文献   

18.
为了提高MoS2作为Li离子电池负极材料整体的导电性和稳定性,将纳米化的MoS2与其它导电性好的材料进行复合,通过水热法在导电基底不锈钢网(Stainless steel net, SS)上原位合成了一层MoS2纳米花,制备了无粘结剂的自支撑结构的SS@MoS2负极材料。纳米花状的MoS2和导电性优异的SS提高了电子和Li离子的扩散速率,同时改善了电极的反应动力学。当作为Li离子电池负极材料时,SS@MoS2电极表现出优异的储Li性能,特别是具有显著的大倍率充放电性能,即在1 000 mA/g的大电流密度下循环600次,比容量仍保持在862.1 mA·h/g。   相似文献   

19.
硒化锡用于钠离子电池负极时具有较高的理论比容量且其成本低廉,因而备受关注.然而,由于其固有的低导电性,以及在充放电过程中的缓慢动力学和体积膨胀,硒化锡作为钠离子电池负极材料表现出的性能较差.本文首次合成SnSe2纳米晶耦合分层多孔碳微球(SnSe2NCs/C)用于增强钠离子电池的比容量、倍率能力和持久性.SnSe2NCs/C独特的结构可以有效阻止SnSe2纳米晶的团聚,减轻材料体积膨胀,加快电子和离子的扩散,增大电解液与电极材料的接触面积,提高材料结构的稳定性.所制备的SnSe2NCs/C微球具有较高的可逆比容量(在100 mA g^-1的电流密度下循环100圈后仍保持565 mA hg^-1的比容量),出色的倍率能力和长循环寿命稳定性(在1 Ag^-1的电流密度下循环1000圈后仍保持363 mAhg^-1的比容量).  相似文献   

20.
以ZnCl2和FeCl3.6H2O为原料, 通过溶剂热法制备了尖晶石型ZnFe2O4材料, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅立叶红外光谱(FT-IR)和恒流充放电测试技术对材料的结构、形貌及电化学性能进行了表征。结果表明, 合成的材料为纳微多孔结构, 其颗粒粒径约为250 nm, 以50 mA/g的电流密度充放电时, 可逆比容量为933.1 mAh/g, 经过100次循环后, 比容量为813.5 mAh/g, 比容量保持率高达87.2%, 表现出优异的循环稳定性能。当电流密度增大到400 mA/g时, 其比容量约为355 mAh/g, 表现出较高的倍率性能。采用该法制备得到的纳米ZnFe2O4具有比容量高、循环稳定好等优点, 是一种具有较强应用前景的锂离子电池负极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号