首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The development of lithium metal anodes capable of sustaining large volume changes, avoiding lithium dendrite formation, and remaining stable in ambient air is crucial for commercially viable lithium metal batteries. Toward this goal, the fabrication of porous and lithiophilic copper scaffolds via a powder metallurgy strategy is reported. Infiltrating the scaffolds with molten lithium followed by exposure to Freon R134a produces lithium metal anodes with dramatically improved rate performance and cycling stability. This work provides a simple yet effective route for the fabrication of safe, low‐cost lithium metal batteries with high energy density.  相似文献   

2.
Lithium–sulfur (Li–S) batteries, based on the redox reaction between elemental sulfur and lithium metal, have attracted great interest because of their inherently high theoretical energy density. However, the severe polysulfide shuttle effect and sluggish reaction kinetics in sulfur cathodes, as well as dendrite growth in lithium‐metal anodes are great obstacles for their practical application. Herein, a two‐in‐one approach with superhierarchical cobalt‐embedded nitrogen‐doped porous carbon nanosheets (Co/N‐PCNSs) as stable hosts for both elemental sulfur and metallic lithium to improve their performance simultaneously is reported. Experimental and theoretical results reveal that stable Co nanoparticles, elaborately encapsulated by N‐doped graphitic carbon, can work synergistically with N heteroatoms to reserve the soluble polysulfides and promote the redox reaction kinetics of sulfur cathodes. Moreover, the high‐surface‐area pore structure and the Co‐enhanced lithiophilic N heteroatoms in Co/N‐PCNSs can regulate metallic lithium plating and successfully suppress lithium dendrite growth in the anodes. As a result, a full lithium–sulfur cell constructed with Co/N‐PCNSs as two‐in‐one hosts demonstrates excellent capacity retention with stable Coulombic efficiency.  相似文献   

3.
Bendable energy‐storage systems with high energy density are demanded for conformal electronics. Lithium‐metal batteries including lithium–sulfur and lithium–oxygen cells have much higher theoretical energy density than lithium‐ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li‐dendrite growth can be further aggravated due to bending‐induced local plastic deformation and Li‐filaments pulverization. Here, the Li‐metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r‐GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending‐tolerant r‐GO/Li‐metal anode, bendable lithium–sulfur and lithium–oxygen batteries with long cycling stability are realized. A bendable integrated solar cell–battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending‐tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems.  相似文献   

4.
Sodium (Na) metal is one of the most promising electrode materials for next‐generation low‐cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co‐doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N‐ and S‐containing functional groups on the carbon nanotubes induce the NSCNTs to be highly “sodiophilic,” which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na‐metal‐based anode (Na/NSCNT anode) exhibits a dendrite‐free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium–oxygen (Na–O2) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na–O2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next‐generation high‐energy‐density sodium‐metal batteries.  相似文献   

5.
Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next‐generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short‐circuit and thermal runaway of the rechargeable batteries. Herein, a dual‐layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual‐layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual‐layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite‐free Li metal anode. This work demonstrates the concept of rational construction of dual‐layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.  相似文献   

6.
The pursuit for high‐energy‐density batteries has inspired the resurgence of metallic lithium (Li) as a promising anode, yet its practical viability is restricted by the uncontrollable Li dendrite growth and huge volume changes during repeated cycling. Herein, a new 3D framework configured with Mo2N‐mofidied carbon nanofiber (CNF) architecture is established as a Li host via a facile fabrication method. The lithiophilic Mo2N acts as a homogeneously pre‐planted seed with ultralow Li nucleation overpotential, thus spatially guiding a uniform Li nucleation and deposition in the matrix. The conductive CNF skeleton effectively homogenizes the current distribution and Li‐ion flux, further suppressing Li‐dendrite formation. As a result, the 3D hybrid Mo2N@CNF structure facilitates a dendrite‐free morphology with greatly alleviated volume expansion, delivering a significantly improved Coulombic efficiency of ≈99.2% over 150 cycles at 4 mA cm?2. Symmetric cells with Mo2N@CNF substrates stably operate over 1500 h at 6 mA cm?2 for 6 mA h cm?2. Furthermore, full cells paired with LiNi0.8Co0.1Mn0.1O2 (NMC811) cathodes in conventional carbonate electrolytes achieve a remarkable capacity retention of 90% over 150 cycles. This work sheds new light on the facile design of 3D lithiophilic hosts for dendrite‐free lithium‐metal anodes.  相似文献   

7.
Suppressing the dendrite formation and managing the volume change of lithium (Li) metal anode have been global challenges in the lithium batteries community. Herein, a duplex copper (Cu) foil with an ant‐nest‐like network and a dense substrate is reported for an ultrastable Li metal anode. The duplex Cu is fabricated by sulfurization of thick Cu foil with a subsequent skeleton self‐welding procedure. Uniform Li deposition is achieved by the 3D interconnected architecture and lithiophilic surface of self‐welded Cu skeleton. The sufficient space in the porous layer enables a large areal capacity for Li and significantly improves the electrode–electrolyte interface. Simulations reveal that the structure allows proper electric field penetration into the connected tunnels. The assembled Li anodes exhibit high coulombic efficiency (97.3% over 300 cycles) and long lifespan (>880 h) at a current density of 1 mA cm?2 with a capacity of 1 mAh cm?2. Stable and deep cycling can be maintained up to 50 times at a high capacity of 10 mAh cm?2.  相似文献   

8.
Lithium–sulfur (Li–S) batteries are considered as one of the most promising options to realize rechargeable batteries with high energy capacity. Previously, research has mainly focused on solving the polysulfides' shuttle, cathode volume changes, and sulfur conductivity problems. However, the instability of anodes in Li–S batteries has become a bottleneck to achieving high performance. Herein, the main efforts to develop highly stable anodes for Li–S batteries, mainly including lithium metal anodes, carbon‐based anodes, and alloy‐based anodes, are considered. Based on these anodes, their interfacial engineering and structure design are identified as the two most important directions to achieve ideal anodes. Because of high reactivity and large volume change during cycling, Li anodes suffer from severe side reactions and structure collapse. The solid electrolyte interphase formed in situ by modified electrolytes and ex situ artificial coating layers can enhance the interfacial stability of anodes. Replacing common Li foil with rationally designed anodes not only suppresses the formation of dendritic Li but also delays the failure of Li anodes. Manipulating the anode interface engineering and rationally designing anode architecture represents an attractive path to develop high‐performance Li–S batteries.  相似文献   

9.
Metallic lithium (Li) is a promising anode material for next‐generation rechargeable batteries. However, the dendrite growth of Li and repeated formation of solid electrolyte interface during Li plating and stripping result in low Coulombic efficiency, internal short circuits, and capacity decay, hampering its practical application. In the development of stable Li metal anode, the current collector is recognized as a critical component to regulate Li plating. In this work, a lithiophilic Cu‐CuO‐Ni hybrid structure is synthesized as a current collector for Li metal anodes. The low overpotential of CuO for Li nucleation and the uniform Li+ ion flux induced by the formation of Cu nanowire arrays enable effective suppression of the growth of Li dendrites. Moreover, the surface Cu layer can act as a protective layer to enhance structural durability of the hybrid structure in long‐term running. As a result, the Cu‐CuO‐Ni hybrid structure achieves a Coulombic efficiency above 95% for more than 250 cycles at a current density of 1 mA cm?2 and 580 h (290 cycles) stable repeated Li plating and stripping in a symmetric cell.  相似文献   

10.
Silicon (Si) has been considered a very promising anode material for lithium ion batteries due to its high theoretical capacity. However, high‐capacity Si nanoparticles usually suffer from low electronic conductivity, large volume change, and severe aggregation problems during lithiation and delithiation. In this paper, a unique nanostructured anode with Si nanoparticles bonded and wrapped by graphene is synthesized by a one‐step aerosol spraying of surface‐modified Si nanoparticles and graphene oxide suspension. The functional groups on the surface of Si nanoparticles (50–100 nm) not only react with graphene oxide and bind Si nanoparticles to the graphene oxide shell, but also prevent Si nanoparticles from aggregation, thus contributing to a uniform Si suspension. A homogeneous graphene‐encapsulated Si nanoparticle morphology forms during the aerosol spraying process. The open‐ended graphene shell with defects allows fast electrochemical lithiation/delithiation, and the void space inside the graphene shell accompanied by its strong mechanical strength can effectively accommodate the volume expansion of Si upon lithiation. The graphene shell provides good electronic conductivity for Si nanoparticles and prevents them from aggregating during charge/discharge cycles. The functionalized Si encapsulated by graphene sample exhibits a capacity of 2250 mAh g?1 (based on the total mass of graphene and Si) at 0.1C and 1000 mAh g?1 at 10C, and retains 85% of its initial capacity even after 120 charge/discharge cycles. The exceptional performance of graphene‐encapsulated Si anodes combined with the scalable and one‐step aerosol synthesis technique makes this material very promising for lithium ion batteries.  相似文献   

11.
Lithium metal is considered as the most promising anode material due to its high theoretical specific capacity and the low electrochemical reduction potential. However, severe dendrite problems have to be addressed for fabricating stable and rechargeable batteries (e.g., lithium–iodine batteries). To fabricate a high‐performance lithium–iodine (Li–I2) battery, a 3D stable lithium metal anode is prepared by loading of molten lithium on carbon cloth doped with nitrogen and phosphorous. Experimental observations and theoretical calculation reveal that the N,P codoping greatly improves the lithiophilicity of the carbon cloth, which not only enables the uniform loading of molten lithium but also facilitates reversible lithium stripping and plating. Dendrites formation can thus be significantly suppressed at a 3D lithium electrode, leading to stable voltage profiles over 600 h at a current density of 3 mA cm?2. A fuel cell with such an electrode and a lithium–iodine cathode shows impressive long‐term stability with a capacity retention of around 100% over 4000 cycles and enhanced high‐rate capability. These results demonstrate the promising applications of 3D stable lithium metal anodes in next‐generation rechargeable batteries.  相似文献   

12.
Li‐metal batteries (LiMBs) are experiencing a renaissance; however, achieving scalable production of dendrite‐free Li anodes for practical application is still a formidable challenge. Herein, a facile and universal method is developed to directly reduce graphene oxide (GO) using alkali metals (e.g., Li, Na, and K) in moderate conditions. Based on this innovation, a spontaneously reduced graphene coating can be designed and modulated on a Li surface (SR‐G‐Li). The symmetrical SR‐G‐Li|SR‐G‐Li cell can run up to 1000 cycles at a high practical current density of 5 mA cm?2 without a short circuit, demonstrating one of the longest lifespans reported with LiPF6‐based carbonate electrolytes. More significantly, a practically scalable paradigm is established to fabricate dendrite‐free Li anodes by spraying a GO layer on the Li anode surface for large‐scale production of LiFePO4/Li pouch cells, reflected by the continuous manufacturing of the SR‐G‐Li anodes based on the roll‐to‐roll technology. The strategy provides new commercial opportunities to both LiMBs and graphene.  相似文献   

13.
Lithium metal is an attractive anode material for rechargeable batteries because of its high theoretical specific capacity of 3860 mA h g?1 and the lowest negative electrochemical potential of ?3.040 V versus standard hydrogen electrode. Despite extensive research efforts on tackling the safety concern raised by Li dendrites, inhibited Li dendrite growth is accompanied with decreased areal capacity and Li utilization, which are still lower than expectation for practical use. A scaffold made of covalently connected graphite microtubes is reported, which provides a firm and conductive framework with moderate specific surface area to accommodate Li metal for anodes of Li batteries. The anode presents an areal capacity of 10 mA h cm?2 (practical gravimetric capacity of 913 mA h g?1) at a current density of 10 mA cm?2, with Li utilization of 91%, Coulombic efficiencies of ≈97%, and long lifespan of up to 3000 h. The analysis of structure evolution during charge/discharge shows inhibited lithium dendrite growth and a reversible electrode volume change of ≈9%. It is suggested that an optimized microstructure with moderate electrode/electrolyte interface area is critical to accommodate volume change and inhibit the risks of irreversible Li consumption by side reactions and Li dendrite growth for high‐performance Li‐metal anodes.  相似文献   

14.
The use of high‐energy‐density Li metal anodes in rechargeable batteries is not possible because of dendrite formation that can potentially result in a battery fire. Although so‐called dendrite‐free Li metal anodes have been reported in many recent publications, Li dendrite growth is still kinetically favorable and it remains a severe safety concern in mass production. Here, a detection system capable of alerting for Li dendrite formation in a two‐electrode battery with no additional electrodes required is reported. When dendrites contact a red phosphorous‐coated separator, dendrite growth is revealed by a significant voltage change. This can activate a signal through the battery management system, warning of the presence of Li dendrites and leading to shutdown of the battery before the dendrites become dangerous.  相似文献   

15.
Bismuth is a promising anode material for state‐of‐the‐art rechargeable batteries due to its high theoretical volumetric capacity and relatively low working potential. However, its charge storage mechanism is unclear, hindering further improvement of the cell performance. Here, using in situ transmission electron microscopy and X‐ray diffraction techniques as well as theoretical analysis, it is found that a large anisotropic volume expansion of 142% occurs along the z‐axis largely due to the alloy reaction during sodiation, significantly reducing the electrochemical performance of bismuth electrodes. To address this problem, ultrathin few‐layer bismuthene with a large aspect ratio is rationally synthesized, and can relieve the expansion strain along the z‐axis. A free‐standing bismuthene/graphene composite electrode with tunable thickness achieves a strikingly stable and high areal sodium storage capacity of 12.1 mAh cm?2, which greatly exceeds that of most reported electrode materials. The clarification of the charge storage mechanism and the superior areal capacity achieved should facilitate the development of bismuth‐based high‐performance anodes for practical electrochemical energy‐storage applications.  相似文献   

16.
Despite high‐surface area carbons, e.g., graphene‐based materials, being investigated as anodes for lithium (Li)‐ion batteries, the fundamental mechanism of Li‐ion storage on such carbons is insufficiently understood. In this work, the evolution of the electrode/electrolyte interface is probed on a single‐layer graphene (SLG) film by performing Raman spectroscopy and Fourier transform infrared spectroscopy when the SLG film is electrochemically cycled as the anode in a half cell. The utilization of SLG eliminates the inevitable intercalation of Li ions in graphite or few‐layer graphene, which may have complicated the discussion in previous work. Combining the in situ studies with ex situ observations and ab initio simulations, the formation of solid electrolyte interphase and the structural evolution of SLG are discussed when the SLG is biased in an electrolyte. This study provides new insights into the understanding of Li‐ion storage on SLG and suggests how high‐surface‐area carbons could play proper roles in anodes for Li‐ion batteries.  相似文献   

17.
With extremely high specific capacity, silicon has attracted enormous interest as a promising anode material for next‐generation lithium‐ion batteries. However, silicon suffers from a large volume variation during charge/discharge cycles, which leads to the pulverization of the silicon and subsequent separation from the conductive additives, eventually resulting in rapid capacity fading and poor cycle life. Here, it is shown that the utilization of a self‐healable supramolecular polymer, which is facilely synthesized by copolymerization of tert‐butyl acrylate and an ureido‐pyrimidinone monomer followed by hydrolysis, can greatly reduce the side effects caused by the volume variation of silicon particles. The obtained polymer is demonstrated to have an excellent self‐healing ability due to its quadruple‐hydrogen‐bonding dynamic interaction. An electrode using this self‐healing supramolecular polymer as binder exhibits an initial discharge capacity as high as 4194 mAh g−1 and a Coulombic efficiency of 86.4%, and maintains a high capacity of 2638 mAh g−1 after 110 cycles, revealing significant improvement of the electrochemical performance in comparison with that of Si anodes using conventional binders. The supramolecular binder can be further applicable for silicon/carbon anodes and therefore this supramolecular strategy may increase the choice of amendable binders to improve the cycle life and energy density of high‐capacity Li‐ion batteries.  相似文献   

18.
Li metal is demonstrated as one of the most promising anode materials for high energy density batteries. However, uncontrollable Li dendrite growth and repeated growth of solid electrolyte interface during the charge/discharge process lead to safety issues and capacity decay, preventing its practical application. To address these issues, an effective strategy is to realize uniform Li nucleation. Here, a stable lithium–scaffold composite electrode (CC/CNT@Li) is designed by melting of lithium metal into 3D interconnected lithiophilic carbon nanotube (CNT) on a porous carbon cloth (CC). The 3D interconnected CNTs successfully change the lithiophobic CC into lithiophilic nature, reducing the polarization of the electrode, ensuring homogenous Li nucleation and continuous smooth Li plating. The CNTs on the surface of CC provide adequate Li nucleation sites and reduce the areal current density to avoid Li dendrite growth. The 3D porous structure of CC/CNT offers enough free room for buffering the huge volume change during Li plating/stripping. The CC/CNT@Li composite anode exhibits dendrite‐free morphology and superior cycling performances over 500 h with low voltage hysteresis of 18, 23, and 71 mV at the current density of 1, 2, and 5 mA cm?2, respectively.  相似文献   

19.
Lithium (sodium)‐metal batteries are the most promising batteries for next‐generation electrical energy storage due to their high volumetric energy density and gravimetric energy density. However, their applications have been prevented by uncontrollable dendrite growth and large volume expansion during the stripping/plating process. To address this issue, the key strategy is to realize uniform lithium (sodium) deposition during the stripping/plating process. Herein, a thin lithiophilic layer consisting of RuO2 particles anchored on brush‐like 3D carbon cloth (RuO2@CC) is prepared by a simple solution‐based method. After infusion of Li, the RuO2@CC transfers to Li‐Ru@CC. Ru nanoparticles not only play a role in leading Li+ (Na+) to plate on the 3D carbon framework, but also lower local current density because of the good electrical conductivity. Furthermore, density functional theory calculations demonstrate that Ru metal, the reaction product of alkali metal and Ru, can lead Li+ to plate evenly around carbon fiber owing to the strong binding energy with Li+. The Li‐Ru@CC anode shows ultralong cycle life (1500 h at 5 mA cm?2). The full cell of Li‐Ru@CC|LiFePO4 exhibits lower polarization (90% capacity retention after 650 cycles). In addition, sodium metal batteries based on Na‐Ru@CC anodes can achieve similar improvement.  相似文献   

20.
Sodium (Na) ion batteries are attracting increasing attention for use in various electrical applications. However, the electrochemical behaviors, particularly the working voltages, of Na ion batteries are substantially lower than those of lithium (Li) ion batteries. Worse, the state‐of‐the‐art Na ion battery cannot meet the demand of miniaturized in modern electronics. Here, we demonstrate that electrochemically exfoliated graphene (EG) nanosheets can reversibly store (PF6) anions, yielding high charging and discharging voltages of 4.7 and 4.3 V vs. Na+/Na, respectively. The dual‐graphene rechargeable Na battery fabricated using EG as both the positive and negative electrodes provided the highest operating voltage among all Na ion full cells reported to date, together with a maximum energy density of 250 Wh kg−1. Notably, the dual‐graphene rechargeable Na microbattery exhibited an areal capacity of 35 μAh cm−2 with stable cycling behavior. This study offers an efficient option for the development of novel rechargeable microbatteries with ultra‐high operating voltage and high energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号