首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
微波热解CVI法制备C/C复合材料   总被引:1,自引:0,他引:1  
在传统CVI工艺的基础上,提出了一种新的炭/炭复合材料沉积致密化技术-微波热解CVI工艺.该工艺采用微波炉加热炭毡预制体,预制体自身发热,并通过控制微波场强分布和热传导过程产生温度梯度,加上微波对极性分子的极化作用和对热解反应和表面沉积反应的催化作用,使预制体从中心至表面逐层快速致密.通过考察炭毡预制体经微波加热后的温度场分布和沉积样品的体积密度变化和径向密度分布,观察材料的微观结构,分析了预制体的致密化过程.结果表明:微波热解CVI工艺在1075℃~1150℃的沉积温度下,以甲烷为碳源前驱体,经90 h的热解沉积,成功制备出体积密度为1.70 g/nc3的炭/炭复合材料,平均致密化速率达到0.0189g/(cm3·h);避免了表面结壳现象,热解炭沿着纤维表面层状生长;采用该工艺制备了结构均匀、主要为中等织构的热解炭.  相似文献   

2.
耦合物理场CVI制备炭/炭复合材料及其机理   总被引:4,自引:0,他引:4  
用液化石油气作碳源、炭毡作增强体,在坯体中埋置导电层诱导产生温度场和电磁场梯度,在自行设计的多元耦合物理场CVI炉中制备C/C复合材料,用偏光显微镜观察热解炭的显微结构,用XRD表征了材料的石墨化度和微晶尺寸等结构参数,所有样品均为一次性沉积所得,其增密曲线是采用把坯体密度与在线电阻进行拟合所得.研究了沉积温度、碳源气体分压对增密速度和材料结构的影响;并对物理场的耦合机理和热解炭的沉积机理作了探讨.研究表明,多元耦合物理场CVI工艺增密速度快,沉积20h,试样的密度达到1.71g/cm3;除了能获得中等织构的光滑层(SL)和带状结构的热解炭,还可获得高织构的粗糙层结构(RL)热解炭,在2300℃、2h热处理后,其石墨化度达到77%以上.  相似文献   

3.
本研究在炭/炭复合材料热解炭基体织构形成与转化的模型基础上, 基于石墨微晶片层的表面结构特点, 建立了蜂窝结构的热解炭沉积表面几何模型, 并运用Monte Carlo方法模拟了在等温等压化学气相渗透(CVI)过程中热解炭基体沉积的动力学过程, 研究了预制体比表面积(AS/VR)和入口气体分压对热解炭微观结构的影响。通过数值模拟并结合已公开发表的实验结果发现, 在CVI工艺过程中一定的压力条件下, 通过控制AS/VR可以获得不同织构的热解炭, 预制体的AS/VR存在两个临界值, 靠近反应器入口处的临界值为1.45 m-1和8.9 mm-1, 靠近反应器出口处的临界值为0.3 mm-1, 当AS/VR处于这两个临界值之间时, 系统主要沉积高织构热解炭; 在同一AS/VR且压强小于30 kPa的条件下, 通过控制反应气体压强的值也可以得到不同织构的热解炭, 并且压强也存在一个临界值, 当压强大于这个临界值时, 系统主要沉积高织构热解炭。  相似文献   

4.
丙烯热解炭过程的气相产物分析和动力学研究(英文)   总被引:1,自引:0,他引:1  
以丙烯为碳源,在700℃~1200℃进行化学气相沉积热解炭。采用气相色谱和质谱联用对反应过程中的气体产物进行定性和半定量分析,采用磁悬浮天平实时称量反应过程中的固相产物进行动力学研究,在此基础上提出丙烯分解形成热解炭的机理。气相产物的分析结果表明:丙烯热解过程产生30多种芳香化合物,随着温度的升高,主要反应生成物由萘转变为苯;动力学研究结果表明,800℃~1000℃的活化能为137±25kJ/mol,生成乙炔的基元反应控制固相产物的形成。当温度高于1000℃时,沉积行为由气相分子通过边界向固相表面扩散和气相成核共同控制,形成热解炭的主要物质逐渐由苯转变为不饱和碳氢化合物如乙烃,乙烯等。  相似文献   

5.
分别运用总括非均相反应机理和详细非均相反应机理,结合均相反应机理(包括285种气相组分,1 074个气相可逆基元反应)来模拟C_3H_8在CVI工艺条件下炭纤维表面热解炭的沉积过程,进而对实验中的气相组分和热解炭的形成过程进行预测。总括非均相反应机理对炭沉积反应进行了简化处理,气相中的烃组分直接在表面脱氢沉积为热解炭;而详细非均相反应机理则利用表面基元反应来描述热解炭沉积过程,包括66种表面组分和250个表面基元反应。本文以C_3H_8为炭源,N_2为稀释气体,温度1 173~1 323 K、低压(2.6 kPa)和滞留时间为0.5~4s条件下的连续搅拌釜反应器为模型进行模拟,气相组成和沉积动力学两方面的预测与实验结果都较好吻合。计算表明在该设定条件下热解炭的前驱体主要为不饱和小分子(C_2H_2和C_2H_4)和甲基,进而利用这些组分定量解释热解炭的沉积动力学。  相似文献   

6.
对热解炭沉积和织构形成过程进行动力学建模,重点分析C/C复合材料CVI制备工艺中基体炭形成时中织构/高织构(MT/HT)热解炭之间轮廓分明的急剧转变现象。基于Langmuir-Hinshelwood(L-H)理论和Particle-filler(P-F)概念模型,将MT和HT热解炭作为炭的两种亚稳相,以气相中占优的两种中间组分作为基体炭前驱体(线性小分子烃和小分子芳香烃),考虑基体表面单分子沉积形成MT热解炭和P-F双分子反应形成HT热解炭的过程,建立包含吸附/解吸附/脱氢的多步非均相热解炭沉积和织构形成反应动力学模型,研究该动力学系统达到稳态时热解炭随气相组成变化的情况。结果表明,热解炭沉积和织构形成过程曲线呈现"S"型特征,该曲线的线性稳定性分析表明热解炭沉积中的织构转变是一个包含迟滞区间的双稳态过程,进一步的计算表明此迟滞区间的大小明显受初始直链烃浓度以及沉积温度的影响。  相似文献   

7.
以等温法进行化学气相沉积(CVD),研究了过程参数(反应温度、碳源气浓度以及炉内气体的滞留时间)对热解炭结构的影响.实验表明,以丙烯为碳源气,保持炉内气体的流动为层流运动方式,在中等温度(880℃)、中等滞留时间(2.19s)以及碳源气与载气体积比为1:3时,能得到粗糙层(RL)结构的热解炭;碳源气裂解为小分子后,在气相中通过加成、聚合、脱氢环化等反应生成苯及含有六元环的芳香烃,才能沉积得到结构较好的热解炭.  相似文献   

8.
为了降低成本,以液化石油气作碳源气体,炭毡作增强体,利用多元耦合场CVI方法快速制备了炭/炭复合材料.研究表明,炭纤维预制体在650℃较低温度条件下沉积15h,密度达到了1.71g·cm~(-3);采用偏光显微镜研究了热解炭的显微结构.结果表明,在同一试样中存在粗糙层、光滑层和带状结构的热解炭,并且材料密度均匀性较好.同时分析了致密化的工艺过程并讨论了热解炭沉积机理.  相似文献   

9.
多元耦合场CVI法快速致密化炭/炭复合材料研究   总被引:2,自引:0,他引:2  
以液化石油气为碳源气体,采用多元耦合场CVI工艺方法快速制备了炭/炭复合材料.在自制冷壁CVI炉中,使用普通炭毡作为炭纤维预制体,设置特殊的导电发热层,沉积温度为650~1050℃,系统的气氛压力为0.1~30kPa,流量为0.1~0.5m3/h,沉积时间12h的条件下可将预制体一次性快速增密至1.75g/cm3.XRD分析表明:该材料经过2300℃,2h高温石墨化处理,其石墨化度(g)可达到61.3%,晶粒尺寸达到16.1nm.PLM分析表明所得材料偏光形貌表现为光滑层(SL)结构,SEM形貌照片测算可知热解炭沉积速率在6.6μm/h以上.分析了炭/炭致密化的过程和热解炭的沉积机理,说明多元耦合场加速了热解炭的沉积,缩短了致密化时间,降低了成本.  相似文献   

10.
李艳  张华坤  嵇阿琳 《材料导报》2014,28(23):12-16,39
化学气相渗透(CVI)致密技术能够赋予炭/炭(C/C)复合材料更优异的综合性能,是制备高性能炭基及陶瓷基复合材料的主要技术手段。综述了C/C复合材料CVI工艺的研究进展,详细介绍了CVI工艺的沉积反应过程及热解炭(PyC)的生成机理,对PyC的微观结构和CVI工艺增密效率的影响因素进行了讨论,最后提出了未来C/C复合材料CVI工艺的发展趋势。  相似文献   

11.
基于热解碳沉积的Particle-Filler(P-F)概念模型和Langmuir-Hinshelwood理论,提出了包含吸附/解吸附/脱氢的多步非均相反应动力学机制,实现了碳/碳复合材料制备中热解碳基体在碳纤维表面连续沉积及其织构形成过程的理论建模,并采用Gibbs系综Monte Carlo (MC)方法对化学气相渗透(CVI)工艺中热解碳基体的织构界面形成过程进行了数值模拟。研究表明:由于气相中小的芳香烃组分C6的吸附比线性小分子烃组分C2的吸附更容易受到抑制,因而限制了沉积表面的P-F双分子反应;随C6与C2浓度比值R的变化,热解碳的织构形成过程呈现双稳态分布,导致了2种不同的亚稳相碳即中织构(MT)和高织构(HT)热解碳的生成,并在碳/碳复合材料热解碳基体内部形成了鲜明的织构界面。进一步的计算表明:热解碳织构双稳态转变存在一个迟滞域,其大小受气相成分的组成参数R、线性小分子烃C2的初始浓度及沉积温度T的影响;为了得到均一织构的热解碳,应当在迟滞域外的区域合理选取CVI的工艺参数。  相似文献   

12.
采用天然气为前躯体在不同压力下使用化学气相渗积法制备炭/炭复合材料。利用甲烷分解热力学与沉积动力学研究了渗积压力对渗积速率和热解炭组织结构的影响。采用偏光显微镜观察热解炭的组织结构。结果表明:随着渗积压力的增加,初始渗积速率增大;但在渗积后期,渗积速率随着渗积压力的增大而降低,导致在高渗积压力下相同时间制备样品的最终密度降低。热解炭组织结构对渗积压力具有很强的依赖性。在低压(1 kPa)下渗积得到的热解炭基体全部为粗糙层结构。在适中的压力(3kPa,5 kPa,10 kPa)下,以炭纤维为圆心由内到外依次得到各向同性和粗糙层热解炭,整个基体以粗糙层为主。在15 kPa下,得到的热解炭组织结构为各向同性和光滑层组织。  相似文献   

13.
根据热梯度化学气相渗透(CVI)工艺制备C/C复合材料的特点, 建立了均相与非均相反应的多场耦合数学模型。以2D炭毡为预制体, 天然气为前驱体, 炉压为100 kPa的工艺条件下, 通过计算获得了预制体致密化过程中密度的演变规律; 分析了沉积温度及气体流量对致密化的影响, 获得了合理的沉积温度和气体流量范围。致密化100 h后, 预制体整体密度的计算值与实验值基本一致, 径向密度分布的模拟值与实验值呈相同的变化规律, 验证了模型的可靠性和模拟的预测能力。   相似文献   

14.
采用液相浸渍-炭化和CVI复合工艺, 制备出在炭纤维和热解炭之间具有中间相沥青过渡层的炭/炭复合材料, 借助偏光显微镜、扫描电镜、透射电镜以及力学性能测试研究了所制备的炭/炭复合材料的微观结构与力学性能. 结果表明: 在偏光显微镜下中间相沥青炭的光学活性高于热解炭的光学活性, 中间相沥青炭在SEM和TEM下均呈片层条带状结构, 热解炭在SEM下呈“皱褶状”片层结构, 在TEM下为粒状结构; 在HRTEM下, 中间相沥青炭、热解炭和炭纤维的晶化程度依次降低. 在加载过程中, 材料内部多层次的界面通过改变裂纹扩展路径而延缓其扩展速度, 在断口形貌上体现出锯齿状的断裂形式, 纤维拔出长度适中, 材料表现出韧性破坏的断裂特征. 材料具有较高的力学性能, 抗弯强度达到244MPa, 断裂韧性达到9.7MPa·m1/2.  相似文献   

15.
为研究热解炭织态结构的生成规律,采用不同压强的甲烷为碳源,在1100℃条件下进行了化学气相沉积和化学气相渗透实验。化学气相沉积以具有不同表面积/自由体积比([A/V]值)的直通方形多孔陶瓷为基体;化学气相渗透实验在直径为1mm细直孔内表面沉积和对炭纤维体积分数为7%的炭毡进行致密化。借助正交偏光显微镜(消光角)和透射电子显微镜(定向角)对在不同实验条件下制备的热解炭进行分析和定量表征。研究发现:热解炭的织态结构可以在两种不同的沉积条件下形成。当甲烷压强较低时为化学生长阶段;当甲烷压强较高时为物理形核阶段。在化学生长控制阶段,热解炭的织态结构可以利用之前提出的“颗粒填充模型(P-F模型)”加以解释。该模型假设高织构热解炭的沉积一定对应于气相中存在具有合适比例的芳香化合物(例如苯)和线性小分子(主要是C2H2),当二者的浓度比偏离该最优比(或者偏大,或者偏小),均将导致中织构甚至低织构热解炭的生成。在化学生成控制阶段,化学气相沉积和化学气相渗透对热解炭织态结构影响的差别,除了[A/V]值而外,还有氢气的作用。在化学气相渗透过程中,基体内部生成的氢气快速扩散至基体表面,使内外沉积速率和织态结构均发生较大变化。  相似文献   

16.
以炭毡为预制体, N2为稀释气体, 甲烷为炭源前驱体, 其分压为10kPa, 沉积温度为1100℃的工艺条件下,研究了不同的气体滞留时间(0.05、0.1、0.15、0.2s)对微波热解CVI工艺制备炭/炭复合材料的致密化速率、样品的体积密度及其密度均匀性的影响, 并对其组织结构进行了观察. 分析了气体的滞留时间对微波热解CVI工艺制备炭/炭复合材料的影响规律及组织结构的变化. 结果表明: 采用微波热解CVI工艺在1100℃90h内制备出体积密度为1.70g·cm-3的炭/炭复合材料, 在滞留时间为0.15s时预制体呈现从内到外逐步致密的规律. 同时, 随着滞留时间的延长, 热解炭的组织结构从低织构到中等织构变化.  相似文献   

17.
《Materials Letters》2002,52(1-2):14-19
The effect of matrix microstructure on the mechanical properties of carbon fiber felts infiltrated by isothermal chemical vapor infiltration (CVI) has been studied by optical microscopy, scanning electron microscopy and three-point bending tests. The nonbrittle fracture behavior of the investigated composites is related to multiple crack deflections caused by the interfacial sliding between pyrocarbon layers with a varying texture degree and the delamination microcracking within the highly textured pyrocarbon layer. An increase of the flexural strength is observed by the composite having a multilayered pyrocarbon matrix.  相似文献   

18.
Two-dimensional(2D) carbon/carbon(C/C) composites with multilayered texture, especially with different thickness of high-textured(HT) pyrocarbon layer, were prepared by isothermal, isobaric chemical vapor infiltration(CVI) technique. The influence of matrix microstructure on mechanical properties of C/C composites was investigated by polarized light microscopy, scanning electron microscopy and three-point bending test. The results show that the samples with multilayer-textured pyrocarbon matrix own a higher flexural strength than the one with pure medium-textured structure, which is attributed to multiple crack deflection and interfacial sliding between different textured pyrocarbon layers and between sub-layers within HT layer. The increase in thickness of HT pyrocarbon layer improves the plasticity of the samples and renders the fracture in pseudo-plastic behavior.  相似文献   

19.
以CVD法定向碳纳米管(ACNTs)阵列为骨架,利用化学气相渗透(CVI)工艺制备了新型定向碳纳米管/炭(ACNT/C)纳米复合材料。通过偏光金相显微镜(PLM)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)和Raman光谱等分析方法对其显微结构和热解炭沉积机理进行了研究。结果表明:所制ACNT/C纳米复合材料的热解炭结构主要为类粗糙层结构,围绕碳纳米管生长的热解炭石墨层片结构清晰,并且碳纳米管和热解炭之间具有良好的界面结合;而在相同工艺条件下围绕炭纤维生长的热解炭为典型的光滑层结构。这可能是由于在热解炭沉积过程中存在碳纳米管"诱导"沉积过程,即沿着碳纳米管径向的离域化共轭π键和具有类似结构的芳香族大分子通过π-π非共价键作用相结合,并在CNTs纳米尺寸的影响下,芳香族大分子按照"软取向"(Softepitaxy)围绕碳纳米管生成环形层片状类石墨结构的热解炭。该研究结果有望为热解炭的可控沉积起到一定的借鉴作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号