首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 527 毫秒
1.
马脾铁蛋白释放铁的反应级数和速率相数的转换   总被引:10,自引:0,他引:10  
采用差示法研究铁蛋白释放铁的动力学规律和反应级数的转换。结果表明:马脾铁蛋白释放铁的速率及相数与还原剂Na2S2O4浓度及铁还原速率无关,与该蛋白蛋白壳的调节速率有关。在pH5.0 ̄6.0范围内,马脾铁蛋白以三相不同速率方式释放占原铁核总铁量80%的铁。但在pH9.0介质中,OH^-不仅能参与铁蛋白铁核组成,减缓释放铁的速率,而且使原混合级反应转换为一级反应,从而使铁蛋白释放铁的动力学过程由复杂转  相似文献   

2.
鱼肝铁蛋白铁核表层接受电子能力的研究   总被引:4,自引:2,他引:2  
采用直接电化学技术研究Hong鱼肝铁蛋白(Liver Ferritin of Dasyatis akajei,DALF)铁核表层接受还原电子的快慢速率和释放铁的动力学级数及规律。实验结果表明,在有氧环境下,DALF铁核表层以两相行为的方式快速地从铂金电极上获得还原电子且用于释放铁反应,其释放铁的还原电们分别为-125mV-375mV(vs.NHE,下同)。在控制还原电位为-200mV和-500mV的条件下,DALF铁核表层解放铁的速率分别为11.1Fe^3 /(DALF.min)和33.3Fe^3 (DALF.min),因而认为DALF从铂金电极接受电子和解放铁的速率快慢与还原电位高低有关。血红素不仅能络合于DALF蛋白壳(DALFh)上,而且还能加速DALFh释放铁的速率,但无法增加DALFh释放铁的总量。DALF铁核结构中的磷铁组成存在着非均匀性。DALF铁核表层磷铁结构具有接受来自于蛋白壳电子隧道提供的还原电子能力。  相似文献   

3.
棕色固氮菌细菌铁蛋白释放铁的动力学方程和性质   总被引:2,自引:1,他引:1  
棕色固氮菌细胞铁蛋白铁核中的磷铁组成存在非均匀性。细菌铁蛋白释放铁的动力学特性表现出复杂性。通过动力学曲线分析,提出蛋白壳自身调节能力起着限制释放铁速率关键步骤的观点建立分析铁蛋白释放铁的动力学特性方程并用它较合理地阐明铁蛋白释放铁的动力不储存铁的途径。用分光光度法和动力学方程研究细胞铁蛋白释放铁的全过程。其表明该蛋白以一级反应方式释放铁核表层的铁和以零级反应方式释放铁核内层的铁。外加磷酸盐能强烈  相似文献   

4.
猪脾铁蛋白电子隧道特性及释放铁途径的研究   总被引:13,自引:0,他引:13  
维生素C和连二亚硫酸钠混合后只能加速猪脾铁蛋白释放铁的速率,并不能使铁蛋白释放铁的动力学途径由复杂转化为简单.而单独维生素C却能利用蛋白壳上的电子隧道传递电子,迫使铁蛋白以二分之一的反应级数方式释放整体铁核的铁并起着抗磷酸盐阻遏释放铁速率的作用,简化释放铁的途径.对维生素C参与铁蛋白释放铁的机理进行了讨论.  相似文献   

5.
棕色固氮菌细菌铁蛋白释放铁的动力学方程和性质   总被引:2,自引:0,他引:2  
棕色固氮菌细菌铁蛋白铁核中的磷铁组成存在非均匀性。细菌铁蛋白释放铁的动力学特性表现出复杂性。通过动力学曲线分析,提出蛋白壳自身调节能力起着限制释放铁速率关键步骤的观点,建立分析铁蛋白释放铁的动力学特性方程并用它较合理地阐明铁蛋白释放铁的动力学规律及储存铁的途径。用分光光度法和动力学方程研究细菌铁蛋白释放铁的全过程,其结果表明该蛋白以一级反应方式释放铁核表层的铁和以零级反应方式释放铁核内层的铁。外加磷酸盐能强烈地抑制释放铁的速率,引起释放铁的反应级数的转化,迫使铁蛋白以一级反应的方式释放铁核中的大多数铁。  相似文献   

6.
细菌铁蛋白释放铁的动力学研究   总被引:6,自引:3,他引:3  
棕色固氮菌细菌蛋白在可见光谱区中有定性的特征吸收峰。细菌铁蛋白经过量Na2S2O4还原后,该蛋白的α、β和S峰的吸光度随着蛋白还原程度增大而递增。细菌铁蛋白的氧化还原状态可分为氧化态、半还原态和深度还原态。细菌铁蛋白铁核中的磷铁组成存在着非均匀性,该蛋白释放铁核表层的铁的反应为一级反应,推测这一过程受蛋白壳中的血红素调控。细菌铁蛋白释放铁核内层的铁的反应为零级反应。  相似文献   

7.
电化学技术研究铁蛋白接受电子的能力   总被引:5,自引:2,他引:3  
Hong鱼肝脏铁蛋白(Liver Ferritin of Dasyatis Akajei,DALF)利用自身的电子隧道直接从铂金电极上获得还原电子且用于释放铁反应。血红素不仅能络合于DALF,形成DALF-heme分子(DALFH),并构建成电子隧道-血红素结构,而且加速DALFH从铂金电极上接受电子的速率,从而达到提高释放铁速率的效果。用抗环血酸作为还原剂时,DALF和DALFH释放铁速率几乎相  相似文献   

8.
猪脾和马脾铁蛋白理化特性的比较   总被引:10,自引:1,他引:9  
黄河清  张凤章 《动物学报》1997,43(2):170-177
H^+,OH^-均能参与猪脾和马脾铁蛋白铁核组成,迫使它们分别释放铁核中对酸碱不稳定的铁组份。在可见光谱中,猪脾和马脾铁蛋释放铁的动力学过程可分为一级快速反应和零级慢速反应,但猪脾铁蛋白释放铁一级反应速度明显大于马脾铁蛋白释放铁的一级反应的速率,推测这些现象均与各自蛋白的蛋白壳自身调节能力有着密切联系。  相似文献   

9.
分别制备含有魟鱼肝铁蛋白(1iver ferritin of Dasyatis akajei,DALF)和海兔肝铁蛋白(Liver ferritin of Aplysia,ALF)的混合蛋白质体系。选用电子光谱技术和不同电子供体,研究在混合蛋白质体系中,DALF和ALF释放铁的动力学过程和规律。实验结果表明,采用Na2S2O4作为还原剂时,DALF以两相行为进行释放铁的反应;而选用抗坏血酸作为还原剂时,DALF却以一级反应动力学方式进行释放铁的反应,简化释放铁的过程。在混合蛋白质体系中且以抗坏血酸和Na2S2O4为电子供体时,ALF均以一级反应动力学过程进行释放铁的反应,认为某些蛋白质参与协助ALF释放铁反应,从而简化释放铁的过程。  相似文献   

10.
铁是血红素、线粒体呼吸链复合体和各种生物酶的重要辅助因子,参与氧气运输、氧化还原反应和代谢物合成等生物过程。铁蛋白(ferritin)是一种铁存储蛋白质,通过储存和释放铁来维持机体内铁平衡。铁自噬(ferritinophagy)作为一种选择性自噬方式,介导铁蛋白降解释放游离铁,参与细胞内铁含量的调控。适度铁自噬维持细胞内铁含量稳定,但铁自噬过度会释放出大量游离铁。通过芬顿 (Fenton)反应催化产生大量的活性氧(reactive oxygen species, ROS),发生脂质过氧化造成细胞受损。因此,铁自噬在维持细胞生理性铁稳态中发挥至关重要的作用。核受体共激活因子4 (nuclear receptor co-activator 4, NCOA4)被认为是铁自噬的关键调节因子,与铁蛋白靶向结合,并传递至溶酶体中降解释放游离铁,其介导的铁自噬构成了铁代谢的重要组成部分。最新研究表明,NCOA4受体内铁含量、自噬、溶酶体和低氧等因素的调控。NCOA4介导的铁蛋白降解与铁死亡(ferroptosis)有关。铁死亡是自噬性细胞死亡过程。铁自噬通过调节细胞铁稳态和细胞ROS生成,成为诱导铁死亡的上游机制,与贫血、神经退行性疾病、癌症、缺血/再灌注损伤与疾病的发生发展密切相关。本文针对NCOA4介导的铁自噬通路在铁死亡中的功能特征,探讨NCOA4在这些疾病中的作用,可能为相关疾病的治疗提供启示。  相似文献   

11.
The reaction of horse spleen ferritin (HoSF) with Fe2+ at pH 6.5 and 7.5 using O2, H2O2 and 1:1 a mixture of both showed that the iron deposition reaction using H2O2 is approximately 20- to 50-fold faster than the reaction with O2 alone. When H2O2 was added during the iron deposition reaction initiated with O2 as oxidant, Fe2+ was preferentially oxidized by H2O2, consistent with the above kinetic measurements. Both the O2 and H2O2 reactions were well defined from 15 to 40 degrees C from which activation parameters were determined. The iron deposition reaction was also studied using O2 as oxidant in the presence and absence of catalase using both stopped-flow and pumped-flow measurements. The presence of catalase decreased the rate of iron deposition by approximately 1.5-fold, and gave slightly smaller absorbance changes than in its absence. From the rate constants for the O2 (0.044 s(-1)) and H2O2 (0.67 s(-1)) iron-deposition reactions at pH 7.5, simulations of steady-state H2O2 concentrations were computed to be 0.45 microM. This low value and reported Fe2+/O2 values of 2.0-2.5 are consistent with H2O2 rapidly reacting by an alternate but unidentified pathway involving a system component such as the protein shell or the mineral core as previously postulated [Biochemistry 22 (1983) 876; Biochemistry 40 (2001) 10832].  相似文献   

12.
Zhao G  Arosio P  Chasteen ND 《Biochemistry》2006,45(10):3429-3436
Overexpression of human H-chain ferritin (HuHF) is known to impart a degree of protection to cells against oxidative stress and the associated damage to DNA and other cellular components. However, whether this protective activity resides in the protein's ability to inhibit Fenton chemistry as found for Dps proteins has never been established. Such inhibition does not occur with the related mitochondrial ferritin which displays much of the same iron chemistry as HuHF, including an Fe(II)/H(2)O(2) oxidation stoichiometry of approximately 2:1. In the present study, the ability of HuHF to attenuate hydroxyl radical production by the Fenton reaction (Fe(2+) + H(2)O(2) --> Fe(3+) + OH(-) + *OH) was examined by electron paramagnetic resonance (EPR) spin-trapping methods. The data demonstrate that the presence of wild-type HuHF during Fe(2+) oxidation by H(2)O(2) greatly decreases the amount of .OH radical produced from Fenton chemistry whereas the ferroxidase site mutant 222 (H62K + H65G) and human L-chain ferritin (HuLF) lack this activity. HuHF catalyzes the pairwise oxidation of Fe(2+) by the detoxification reaction [2Fe(2+) + H(2)O(2) + 2H(2)O --> 2Fe(O)OH(core) + 4H(+)] that occurs at the ferroxidase site of the protein, thereby preventing the production of hydroxyl radical. The small amount of *OH radical that is produced in the presence of ferritin (相似文献   

13.
The origin of previously observed variations in stoichiometry of iron oxidation during the oxidative deposition of iron in ferritin has been poorly understood. Knowledge of the stoichiometry of Fe(II) oxidation by O2 is essential to establishing the mechanism of iron core formation. In the present work, the amount of Fe(II) oxidized was measured by M?ssbauer spectrometry and the O2 consumed by mass spectrometry. The number of protons produced in the reaction was measured by "pH stat" titration and hydrogen peroxide production by the effect of the enzyme catalase on the measured stoichiometry. For protein samples containing low levels of iron (24 Fe(II)/protein) the stoichiometry was found to be 1.95 +/- 0.18 Fe(II)/O2 with H2O2 being a product, viz. Equation 1. 2Fe2+ + O2 + 4H2O----2FeOOH + H2O2 + 4H+ (1) EPR spin trapping experiments showed no evidence of superoxide radical formation. The stoichiometry markedly increased with additional iron (240-960 Fe/protein), to a value of 4 Fe(II)/O2 as in Equation 2. 4Fe2+ + O2 + 6H2O----4FeOOH + 8H+ (2) As the iron core is progressively laid down, the mechanism of iron oxidation changes from a protein dominated process with H2O2 being the primary product of O2 reduction to a mineral surface dominated process where H2O is the primary product. These results emphasize the importance of the apoferritin shell in facilitating iron oxidation in the early stage of iron deposition prior to significant development of the polynuclear iron core.  相似文献   

14.
The extended X-ray absorption fine structure (EXAFS) associated with the iron K-edge has been measured and interpreted for ferritin and haemosiderin extracted from horse spleen, and haemosiderin extracted from the livers of humans with treated primary haemochromatosis, and from the spleens of humans with treated secondary haemochromatosis. For ferritin, the data are consistent with, on average, each iron atom being in an environment comprised of approx. six oxygen atoms at 1.93 +/- 0.02 A, approx. 1.5 iron atoms at 2.95 +/- 0.02 A and approx. 1.1 iron atoms at 3.39 +/- 0.02 A, with a further shell of oxygens at approx. 3.6 A. Iron in horse spleen haemosiderin is in an essentially identical local environment to that in horse spleen ferritin. In contrast, the EXAFS data for primary haemochromatosis haemosiderin indicate that the iron-oxide core is amorphous; only a single shell of approx. six oxygen atoms at approx. 1.94 +/- 0.02 A being apparent. Secondary haemochromatosis haemosiderin shows an ordered structure with approx. 1.4 iron atoms at both 2.97 +/- 0.02 and 3.34 +/- 0.02 A. This arrangement of iron atoms is similar to that in horse spleen haemosiderin, but the first oxygen shell is split with approx. 2.9 atoms at 1.90 +/- 0.02 A and approx. 2.7 at 2.03 +/- 0.02 A, indicative of substantial structural differences between secondary haemochromatosis haemosiderin and horse spleen haemosiderin.  相似文献   

15.
Lindsay S  Brosnahan D  Watt GD 《Biochemistry》2001,40(11):3340-3347
The reaction of Fe2+ with O2 in the presence of horse spleen ferritin (HoSF) results in deposition of FeOH3 into the hollow interior of HoSF. This reaction was examined at low Fe2+/HoSF ratios (5-100) under saturating air at pH 6.5-8.0 to determine if H2O2 is a product of the iron deposition reaction. Three methods specific for H2O2 detection were used to assess H2O2 formation: (1) a fluorometric method with emission at 590 nm, (2) an optical absorbance method based on the reaction H2O2 + 3I- + 2H+ = I3- + 2H2O monitored at 340 nm for I3- formation, and (3) a differential pulsed electrochemical method that measures O2 and H2O2 concentrations simultaneously. Detection limits of 0.25, 2.5, and 5.0 microM H2O2 were determined for the three methods, respectively. Under constant air-saturation conditions (20% O2) and for a 5-100 Fe2+/HoSF ratio, Fe2+ was oxidized and the resulting Fe3+ was deposited within HoSF but no H2O2 was detected as predicted by the reaction 2Fe2+ + O2 + 6H2O = 2Fe(OH)3 + H2O2 + 4H+. Two other sets of conditions were also examined: one with excess but nonsaturating O2 and another with limiting O2. No H2O2 was detected in either case. The absence of H2O2 formation under these same conditions was confirmed by microcoulometric measurements. Taken together, the results show that under low iron loading conditions (5-100 Fe2+/HoSF ratio), H2O2 is not produced during iron deposition into HoSF using O2 as an oxidant. This conclusion is inconsistent with previous, carefully conducted stoichiometric and kinetic measurements [Xu, B., and Chasteen, N. D. (1991) J. Biol. Chem. 266, 19965], predicting that H2O2 is a quantitative product of the iron deposition reaction with O2 as an oxidant, even though it was not directly detected. Possible explanations for these conflicting results are considered.  相似文献   

16.

Background

Extensive in-vitro studies have focused on elucidating the mechanism of iron uptake and mineral core formation in ferritin. However, despite a plethora of studies attempting to characterize iron release under different experimental conditions, the in-vivo mobilization of iron from ferritin remains poorly understood.Several iron-reductive mobilization pathways have been proposed including, among others, flavin mononucleotides, ascorbate, glutathione, dithionite, and polyphenols. Here, we investigate the kinetics of iron release from ferritin by reduced flavin nucleotide, FMNH2, and discuss the physiological significance of this process in-vivo.

Methods

Iron release from horse spleen ferritin and recombinant human heteropolymer ferritin was followed by the change in optical density of the Fe(II)–bipyridine complex using a Cary 50 Bio UV–Vis spectrophotometer. Oxygen consumption curves were followed on a MI 730 Clark oxygen microelectrode.

Results

The reductive mobilization of iron from ferritin by the nonenzymatic FMN/NAD(P)H system is extremely slow in the presence of oxygen and might involve superoxide radicals, but not FMNH2. Under anaerobic conditions, a very rapid phase of iron mobilization by FMNH2 was observed.

Conclusions

Under normoxic conditions, FMNH2 alone might not be a physiologically significant contributor to iron release from ferritin.

General significance

There is no consensus on which iron release pathway is predominantly responsible for iron mobilization from ferritin under cellular conditions. While reduced flavin mononucleotide (FMNH2) is one likely candidate for in-vivo ferritin iron removal, its significance is confounded by the rapid oxidation of the latter by molecular oxygen.  相似文献   

17.
Apo horse spleen ferritin (apo HoSF) was reconstituted to various core sizes (100-3500 Fe3+/HoSF) by depositing Fe(OH)3 within the hollow HoSF interior by air oxidation of Fe2+. Fe2+ and phosphate (Pi) were then added anaerobically at a 1:4 ratio, and both Fe2+ and Pi were incorporated into the HoSF cores. The resulting Pi layer consisted of Fe2+ and Pi at about a 1:3 ratio which is strongly attached to the reconstituted ferritin mineral core surface and is stable even after air oxidation of the bound Fe2+. The total amount of Fe2+ and Pi bound to the iron core surface increases as the core volume increases up to a maximum near 2500 iron atoms, above which the size of the Pi layer decreases with increasing core size. M?ssbauer spectroscopic measurements of the Pi-reconstituted HoSF cores using 57Fe2+ show that 57Fe3+ is the major species present under anaerobic conditions. This result suggests that the incoming 57Fe2+ undergoes an internal redox reaction to form 57Fe3+ during the formation of the Pi layer. Addition of bipyridine removes the 57Fe3+ bound in the Pi layer as [57Fe(bipy)3]2+, showing that the bound 57Fe2+ has not undergone irreversible oxidation. This result is related to previous studies showing that 57Fe2+ bound to native core is reversibly oxidized under anaerobic conditions in native holo bacterial and HoSF ferritins. Attempts to bury the Pi layer of native or reconstituted HoSF by adding 1000 additional iron atoms were not successful, suggesting that after its formation, the Pi layer "floats" on the developing iron mineral core.  相似文献   

18.
The early redox events involved in iron reduction and mobilization in mammalian ferritin have been investigated by several techniques. Sedimentation velocity measurements of ferritin samples with altered core sizes, prepared by partial reduction and Fe2+ chelation, suggest two different events occur during iron loss from the ferritin core. Reductive optical titrations confirm this biphasic behavior by showing that the first 20-30% of core reduction has different optical properties than the latter 70-80%. Proton uptake during initial core reduction is near zero, but as the percent core reduction increases, the proton uptake (H+/e) values increase to 2 H+/e (2 H+/Fe3+ reduced) as core reduction approaches 1 e/Fe3+. Coulometric reduction of ferritin by mediators of different redox potential and different cross-sectional areas show a two-phase sigmoidal reaction pattern in which initial core reduction occurs at a slower rate than later core reduction. The above experiments were all conducted in the absence of iron chelators so that the observed results were all attributed to core reduction rather than the combined effects of core reduction accompanied by Fe2+ chelation. The coulometric reduction of ferritin by various mediators shows a correlation more with reduction potential than with molecular cross-sectional area. The role of the ferritin channels in core reduction is considered in terms of the reported results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号