首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
GSM-R(GSM for Railway)的可靠性和高效性引起人们的关注。列车速度的提升导致多普勒效应更严重、切换触发位置更靠后、越区切换更频繁。多普勒效应恶化接收信号质量使中断率增加;切换触发位置靠后变相缩小重叠区覆盖范围使越区切换失败率增加;频繁的越区切换进一步降低系统可靠性。因此列车速度的提升对GSM-R网络的安全性和可靠性产生重要影响。同时,我国铁路网络的不断扩展对GSM-R系统的容量提出更高的要求。本文首先对GSM-R网络传统切换策略进行建模和性能分析。随后,提出一种利用列车位置信息和中继功率控制技术的切换优化方案。在该方案中,列车到达切换位置前,利用中继站获得分集增益,提升信道容量和链路可靠性;处于切换位置时,通过中继的功率控制,保证本小区的信号满足最低通信要求,变相扩大重叠区覆盖范围的同时有利于触发切换提升切换成功率。仿真结果表明:本文提出的方案有效地提升切换成功概率和信道容量,明显改善了GSM-R系统的性能。  相似文献   

2.
基于SPN的越区切换模型分析   总被引:3,自引:1,他引:2  
CTCS-3列车运行控制系统是中国列车控制系统(CTCS)的重要组成部分之一,它采用GSM R实现地面一列车间连续、双向的安全信息的无线传输.对于GSM-R而言,移动台的越区切换必然引起通信连接的暂时中断.由于安全数据传输直接影响行车安全,为保证其传输的可靠性,必然要求更短的切换时间和更高的切换成功率.本文研究安全数据通信在越区切换时的传输可靠性,并对越区切换过程进行随机Petri网的建模和分析.给出列车速度与越区切换成功率的关系,以及列车在350km/h的速度下,越区切换时间与越区切换成功率之间的关系.最后,本文将分析结果与CTCS-3需求标准进行了比较,说明其可以满足要求.  相似文献   

3.
CTCS-3级列车运行控制系统利用GSM-R网络进行车地间连续、双向的安全信息传输。而GSM-R系统采用硬切换技术,切换时必然会产生短暂的通信中断,这就会影响列车控制类数据传输业务。为保证安全数据传输的可靠性,迫切要求更短的切换时间和更高的切换成功率。对此,建立GSM-R系统越区切换的随机Petri网模型,分析影响越区切换成功率的因素,并利用MATLAB仿真得到列车运行速度、越区切换中断时间以及列车追踪间隔与越区切换成功率的关系;最后说明列车在350 km/h和430 km/h速度下运行时,越区切换成功率是否满足CTCS-3级系统需求标准要求。  相似文献   

4.
一种基于车载双天线的GSM-R冗余网络无缝切换方案   总被引:3,自引:0,他引:3  
随着铁路现代化的发展,列车运行速度逐渐增加,由此导致列车在穿越GSM-R网络小区的过程中需要频繁地执行越区切换操作。由于GSM-R网络先断后连的硬切换方式必然造成切换过程中存在通信中断等问题,对行车造成一定的安全隐患。传统的切换优化方法仅针对单层网络中移动台越区切换过程进行改进,忽视了GSM-R系统现有的冗余网络配置特点。本文提出一种将GSM-R双层冗余网络中的不同基站组成一个为列车服务的虚拟小区,并采用车载双天线与虚拟小区进行协作通信的方案,以充分利用冗余网络配置特点,从而实现列车穿越小区过程中完成无缝切换操作。仿真结果表明:所提出的方案使切换中断率明显降低,为列车的安全运行提供了可靠保证。  相似文献   

5.
高速列车越区切换参数具有较强的时空相关性,以及无线信号在不同线路地形下具有衰落差异性,这都对高性能的越区切换提出了新的挑战,针对这一问题,设计一种基于长短期记忆网络动态波束赋形的高速列车越区切换算法。提出基于LTE-R中继通信模型的高铁典型运行场景中波束无遮挡传输的基站天线高度设置规律,通过估计发射波束主瓣方向并利用参考信号接收功率序列的时间相关特性,提出eNB重叠区内天线波束增益需求预测模型;同时采用增加波束预留角策略实现联合约束条件下的高速列车越区切换。结合高速铁路典型运行场景(路堑、高架桥)的路径损耗预测模型仿真评估了算法性能。结果表明,所提算法以略微牺牲越区切换时延为代价提高了越区切换成功率,能够有效避免高速列车越区切换引起的通信中断问题。  相似文献   

6.
越区切换是保障高速列车车-地数据传输的重要基础,切换失败或异常切换在CTCS-3级线路中可能会引起无线超时甚至系统降级。本文通过简要介绍GSM-R无线网络越区切换的基本流程,阐述越区切换的测试方法,基于高速铁路综合检测列车的动态检测数据分析近年来切换成功率指标的变化趋势,指出造成越区切换故障的原因,并提出优化建议。  相似文献   

7.
GSM-R网络越区切换性能与高速铁路列车运行安全息息相关。在列车实际运营中,异常越区切换问题相比切换失败问题更为常见,但目前对其尚未有明确定义及有效的判决算法,也导致无法有效划分GSM-R小区,并分析其对行车的影响。基于GSM-R动态检测越区切换数据,结合列车位置与行驶方向,分析不同异常切换的特点,将异常切换问题分为提前切换、滞后切换、反向切换、重复切换、跨基站切换以及其他异常切换6类,并提出基于GSM-R网络基础数据库的异常越区切换判决算法,实现了列车异常越区切换自动识别和类型判定,以及以小区为单位的切换结果统计。结合实际动态检测数据对异常越区切换判决算法进行验证,依据实际案例分析不同类型异常切换的特征。实验结果表明,提出的异常越区切换分类标准具有合理性且判决算法具有准确性,为GSM-R通信小区的准确划分和异常切换的影响评估提供支撑。  相似文献   

8.
CBTC越区切换中断时间分析   总被引:1,自引:0,他引:1  
基于通信的列车控制(CBTC)系统采用IEEE802.11标准作为无线通信传输协议。根据IEEE802.11标准中规定的越区切换流程,采用移动通信系统越区切换中断时间的计算方法,推导出越区切换中断时间与列车运行速度的关系表达式。采用此关系表达式进行理论计算的结果显示,在发射功率为17 dBm,发射和接收天线增益均为10 dB,发射与接收端损耗均为5 dB的条件下,典型行车速度为50,70,90 km.h-1时,越区切换中断时间应分别控制在224,160和124 ms以内才能够保证通信持续正常。建立2列列车追踪运行模型,仿真不同越区切换中断时间的后车运行曲线。仿真结果显示:列车以25 m.s-1(90 km.h-1)的速度行驶时,越区切换中断时间在130 ms以内能够满足列车通信的需求;验证了CBTC越区切换中断时间与列车行驶速度的关系表达式是合理的。  相似文献   

9.
针对高速列车在行驶过程中面临的安全切换问题,提出基于列车移动方向和位置的目标基站选择方法,设计一种基于预认证的高速列车安全切换机制,结合可认证密钥协商协议实现中继站和目标基站之间的双向认证以及生成共享的会话密钥。安全性分析与仿真实验表明,提出的切换机制不仅具有较高的安全性,而且有效地降低了切换时延和中断率,同时保持了较为稳定的吞吐率,显著改善了车地无线通信的切换性能。当高速列车行驶速率低于500 km/h时,切换时延普遍低于50 ms,切换中断率低于1.6%;当高速列车行驶速率为350 km/h时,切换过程的平均吞吐率高于19.5 Mbit/s。  相似文献   

10.
CBTC列车安全定位中通信中断时间的研究   总被引:1,自引:0,他引:1  
通信中断的存在会对目前城市轨道交通的CBTC列车安全定位产生影响,进而影响列车安全间隔距离。CBTC车地通信系统大多采用无线局域网技术。越区切换中断是导致通信中断的主要原因,根据IEEE 802.11协议的越区切换流程,本文推导出越区切换中断时间与列车速度的关系表达式,在此基础上根据安全定位的实现方法和移动闭塞系统中列车安全间隔距离的计算方法,推导出通信中断时间与影响安全定位的因素之一——估计的运行距离及列车运行安全间隔之间的关系表达式。建立两列列车追踪运行模型,仿真不同通信中断时间下两列车的追踪间隔距离。采用此关系表达式进行理论计算的结果与仿真结果验证了通信中断时间与估计的运行距离及列车运行安全间隔的关系表达式是合理的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号