首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel nanocatalyst was developed based on covalent surface functionalization of MCM‐41 with polyethyleneimine (PEI) using [3‐(2,3‐Epoxypropoxy)propyl] trimethoxysilane (EPO) as a cross‐linker. Amine functional groups on the surface of MCM‐41 were then conjugated with iodododecane to render an amphiphilic property to the catalyst. Palladium (II) was finally immobilized onto the MCM‐41@PEI‐dodecane and the resulted MCM‐41@aPEI‐Pd nanocatalyst was characterized by FT‐IR, TEM, ICP‐AES and XPS. Our designed nanocatalyst with a distinguished core‐shell structure and Pd2+ ions as catalytic centers was explored as an efficient and recyclable catalyst for Heck and oxidative boron Heck coupling reactions. In Heck coupling reaction, the catalytic activity of MCM‐41@aPEI‐Pd in the presence of triethylamine as base led to very high yields and selectivity. Meanwhile, the MCM‐41@aPEI‐Pd as the first semi‐heterogeneous palladium catalyst was examined in the C‐4 regioselective arylation of coumarin via the direct C‐H activation and the moderate to excellent yields were obtained toward different functional groups. Leaching test indicated the high stability of palladium on the surface of MCM‐41@aPEI‐Pd as it could be recycled for several runs without significant loss of its catalytic activity.  相似文献   

2.
A palladium S‐benzylisothiourea complex was anchored on functionalized MCM‐41 (Pd‐SBT@MCM‐41) and applied as efficient and reusable catalyst for the synthesis of 5‐substituted 1H –tetrazoles using [2 + 3] cycloaddition reaction of various organic nitriles with sodium azide (NaN3) in poly(ethylene glycol) (PEG) as green solvent. Also this catalyst was applied as an versatile organometallic catalyst for Suzuki cross‐coupling reaction of aryl halides and phenylboronic acid (PhB(OH)2) or sodium tetraphenyl borate (NaB(Ph)4). This nanocatalyst was characterized by thermal gravimetric analysis (TGA), X‐ray Diffraction (XRD), scanning electron microscopy (SEM), inductively Coupled Plasma (ICP) and N2 adsorption–desorption isotherms techniques. Recovery of the catalyst is easily achieved by centrifugation for several consecutive runs.  相似文献   

3.
The Stille cross‐coupling reaction of organostannanes with aryl halides was achieved in the presence of a catalytic amount of MCM‐41‐supported mercapto palladium(0) complex (1 mol%) in DMF? H2O (9:1) under air atmosphere in good to high yields. This MCM‐41‐supported palladium catalyst can be reused at least 10 times without any decrease in activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Hybrid mesoporous periodic organosilicas (Ph‐PMOs) with phenylene moieties embedded inside the silica matrix were used as a heterogeneous catalyst for the Ullmann coupling reaction in water. XRD, N2 sorption, TEM, and solid‐state NMR spectroscopy reveal that mesoporous Ph‐PMO supports and Pd/Ph‐PMO catalysts have highly ordered 2D hexagonal mesostructures and covalently bonded organic–inorganic (all Si atoms bonded with carbon) hybrid frameworks. In the Ullmann coupling reaction of iodobenzene in water, the yield of biphenyl was 94 %, 34 %, 74 % and for palladium‐supported Ph‐PMO, pure silica (MCM‐41), and phenyl‐group‐modified Ph‐MCM‐41 catalysts, respectively. The selectivity toward biphenyl reached 91 % for the coupling of boromobenzene on the Pd/Ph‐PMO catalyst. This value is much higher than that for Pd/Ph‐MCM‐41 (19 %) and Pd/MCM‐41 (0 %), although the conversion of bromobenzene for these two catalysts is similar to that for Pd/Ph‐PMO. The large difference in selectivity can be attributed to surface hydrophobicity, which was evaluated by the adsorption isotherms of water and toluene. Ph‐PMO has the most hydrophobic surface, and in turn selectively adsorbs the reactant haloaryls from aqueous solution. Water transfer inside the mesochannels is thus restricted, and the coupling reaction of bromobenzene is improved.  相似文献   

5.
A novel, effective 1‐glycyl‐3‐methyl imidazolium chloride–palladium(II) complex ([Gmim]Cl–Pd(II)) was synthesized and studied as an organocatalyst for the Sonogashira coupling reaction under solvent‐free conditions at 25 °C. The hydrophobic group on amino acid favors reagent diffusion toward the chloroglycine moiety, increasing the catalytic activity of supported palladium complex. By this protocol, different aryl halides (Cl, Br and I) were reacted with phenylacetylene in good to excellent yields with turnover number 8.0 × 102 to 9.6 × 102. The catalyst was recycled for the reaction of bromobenzene with phenylacetylene for eight runs without appreciable loss of its catalytic activity and negligible metal leaching. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
郑国民a 王萍萍a  b  蔡明中  a 《中国化学》2009,27(7):1420-1426
在催化量的MCM-41负载双齿膦钯(0)配合物存在下,芳基碘化物和芳基硼酸、一氧化碳在常压下能顺利进行羰基化Suzuki偶联反应,高产率地生成了各种二芳酮化合物。MCM-41负载双齿膦钯(0)配合物具有比PdCl2(PPh3)2 更高的活性和选择性,且可回收再用10次其活性基本不变,为各种功能化二芳酮的合成提供了方便实用的新途径。  相似文献   

7.
Palladium‐catalysed cross‐coupling reactions are some of the most frequently used synthetic tools for the construction of new carbon–carbon bonds in organic synthesis. In the work presented, Pd(II) complex catalysts were synthesized from palladium chloride and nitrogen donor ligands as the precursors. Infrared and 1H NMR spectroscopic analyses showed that the palladium complexes were formed in the bidentate mode to the palladium centre. The resultant Pd(II) complexes were tested as catalysts for the coupling of organobismuth(III) compounds with aryl and acid halides leading to excellent yields with high turnover frequency values. The catalysts were stable under the reaction conditions and no degradation was noticed even at 150°C for one of the catalysts. The reaction proceeds via an aryl palladium complex formed by transmetallation reaction between catalyst and Ar3Bi. The whole synthetic transformation has high atom economy as all three aryl groups attached to bismuth are efficiently transferred to the electrophilic partner.  相似文献   

8.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
An efficient and practical route to β‐keto sulfones has been developed through heterogeneous oxidative coupling of oxime acetates with sodium sulfinates by using an MCM‐41‐supported Schiff base‐pyridine bidentate copper (II) complex [MCM‐41‐Sb,Py‐Cu (OAc)2] as the catalyst and oxime acetates as an internal oxidant, followed by hydrolysis. The reaction generates a variety of β‐keto sulfones in good to excellent yields. This new heterogeneous copper (II) catalyst can be easily prepared via a simple procedure from readily available and inexpensive reagents and exhibits the same catalytic activity as Cu (OAc)2. MCM‐41‐Sb,Py‐Cu (OAc)2 is also easy to recover and is recyclable up to eight times with almost consistent activity.  相似文献   

10.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

11.
The cerium‐containing MCM‐41 (Ce‐MCM‐41) has been synthesized by direct hydrothermal method. The low‐angle XRD patterns revealed the typical five major peaks of MCM‐41 type hexagonal structures. The interplanar spacing d100 = 38.4 Å was obtained that can be indexed on a hexagonal unit cell parameter with ao = 44.3 Å which was larger than that of pure siliceous MCM‐41 (Si‐MCM‐41). Transmission electron micrograph shows the regular hexagonal array of uniform channel characteristics of MCM‐41. The BET surface area of Ce‐MCM‐41 was 840 m2/g, which is much reduced as compared to that of Si‐MCM‐41, with the pore size of 26.9 Å and mesopore volume of 0.78 cm3/g were measured by nitrogen adsorption‐desorption isotherm at 77 K. Along with the results, the synthesized Ce‐MCM‐41 exhibited a well‐ordered MCM‐41‐type mesoporous structure with the incorporation of cerium. Using Ce‐MCM‐41 as a support, the Rh (0.5 wt%) catalyst exhibited very high activity for the NO/CO reactions.  相似文献   

12.
Zero‐valent palladium complex, Pd(PTh3)3, with three tri(2‐thienyl)phosphine ligands was prepared and characterized. Pd(PTh3)3 is superior to Pd(PPh3)4 in catalyzing Suzuki‐Miyaura coupling and polymerization of thiophene‐based derivatives. The Suzuki polycondensation of 3‐hexyl‐5‐iodothiophene‐2‐boronic pinacol ester with Pd(PTh3)3 as the catalyst precursor afforded high‐molecular‐weight P3HT with high regularity and yield. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4556–4563, 2008  相似文献   

13.
The activity of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex, A (MOBPPY = 4‐methoxybenzoylmethylenetriphenyl‐ phosphoraneylide), was investigated in the Heck–Mizoroki C? C cross‐coupling reaction under conventional heating and microwave irradiation conditions. The complex is an active and efficient catalyst for the Heck reaction of aryl halides. The yields were excellent using a catalytic amount of [Pd(C6H4CH2 NH2‐κ2‐C‐N)PPh3MOBPPY]OTf complex in N‐methyl‐2‐pyrrolidinone (NMP) at 130 °C and 600 W. In comparison to conventional heating conditions, the reactions under microwave irradiation gave higher yields in shorter reaction times. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

15.
The title compounds, trans‐dichloro­bis[(1R,2R,3R,5S)‐(−)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II), [PdCl2(C10H19N)2], and trans‐dichloro­bis[(1S,2S,3S,5R)‐(+)‐2,6,6‐trimethyl­bicyclo­[3.1.1]heptan‐3‐amine]palladium(II) hemihydrate, [PdCl2(C10H19N)2]·0.5H2O, present different arrangements of the amine ligands coordinated to PdII, viz. antiperiplanar in the former case and (−)anticlinal in the latter. The hemihydrate is an inclusion compound, with a Pd coordination complex and disordered water mol­ecules residing on crystallographic twofold axes. The crystal structure for the hemihydrate includes a short Pd⋯Pd separation of 3.4133 (13) Å.  相似文献   

16.
Dichloro[1,3‐bis(2,6‐di‐4‐heptylphenyl)imidazol‐2‐ylidene](3‐chloropyridyl)palladium(II) (Pd‐PEPPSI‐IHeptCl), a new, very bulky yet flexible Pd–N‐heterocyclic carbene (NHC) complex has been evaluated in the cross‐coupling of secondary alkylzinc reactants with a wide variety of oxidative addition partners in high yields and excellent selectivity. The desired, direct reductive elimination branched products were obtained with no sign of migratory insertion across electron‐rich and electron‐poor aromatics and all forms of heteroaromatics (five and six membered). Impressively, there is no impact of substituents at the site of reductive elimination (i.e., ortho or even di‐ortho), which has not yet been demonstrated by another catalyst system to date.  相似文献   

17.
We report the synthesis and characterization of a novel 4‐(dimethylamino)pyridinium‐substituted η3‐cycloheptatrienide–Pd complex which is free of halide ligands. Diacetonitrile{η3‐[4‐(dimethylamino)pyridinium‐1‐yl]cycloheptatrienido}palladium(II) bis(tetrafluoroborate), [Pd(C2H3N)2(C14H16N2)](BF4)2, was prepared by the exchange of two bromide ligands for noncoordinating anions, which results in the empty coordination sites being occupied by acetonitrile ligands. As described previously, exchange of only one bromide leads to a dimeric complex, di‐μ‐bromido‐bis({η3‐[4‐(dimethylamino)pyridinium‐1‐yl]cycloheptatrienido}palladium(II)) bis(tetrafluoroborate) acetonitrile disolvate, [Pd2Br2(C14H16N2)2](BF4)2·2CH3CN, with bridging bromide ligands, and the crystal structure of this compound is also reported here. The structures of the cycloheptatrienide ligands of both complexes are analogous to the dibromide derivative, showing the allyl bond in the β‐position with respect to the pyridinium substituent. This indicates that, unlike a previous interpretation, the main reason for the formation of the β‐isomer cannot be internal hydrogen bonding between the cationic substituents and bromide ligands.  相似文献   

18.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   

19.
The phosphorus ylide [Ph3PCHC(O)C6H4‐NO2–4] reacted with Pd(OAc)2 to give the C,C‐orthometallated complex [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐OAc)]2, which underwent bridge exchange reaction with NaN3, NaCl, KBr and KI, respectively, to afford the binuclear C,C‐orthopalladated complexes [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐X)]2 (X = N3 ( 1 ), Cl ( 2 ), Br ( 3 ) and I ( 4 )). The complexes were identified using spectroscopy (infrared and NMR), CHNS technique and single‐crystal X‐ray structure analysis. Thereafter, palladium nanoparticles with narrow size distribution were easily prepared using the refluxing reaction of iodo‐bridged orthopalladated complex 4 with poly(N ‐vinyl‐2‐pyrrolidone) (PVP) as the protecting group. The PVP‐stabilized palladium nanoparticles were characterized using a variety of techniques including X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, inductively coupled plasma analysis and Fourier transform infrared spectroscopy. The catalytic activity of the PVP‐stabilized palladium nanoparticles was evaluated in the Suzuki reaction of phenylboronic acid and the Heck reaction of styrene with aryl halides of varying electron densities. This catalyst exhibited excellent catalytic activity for Suzuki cross‐coupling reactions in ethanol–water. Notably, aryl chlorides which are cheaper and more accessible than their bromide and iodide counterparts also reacted satisfactorily using this catalyst. After completion of reactions, the catalyst could be separated using a simple method and used many times in repeat cycles without considerable loss in its activity.  相似文献   

20.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号