首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The preparation of novel immobilized and stabilized derivatives of trypsin is reported here. The new derivatives preserved 80% of the initial catalytic activity toward synthetic substrates [benzoyl-arginine p-nitroanilide (BAPNA)] and were 50,000-fold more thermally stable than the diluted soluble enzyme in the absence of autolysis. Trypsin was immobilized on highly activated glyoxyl-Sepharose following a two-step immobilization strategy: (a) first, a multipoint covalent immobilization at pH 8.5 that only involves low pK(a) amino groups (e.g., those derived from the activation of trypsin from trypsinogen) is performed and (b) next, an additional alkaline incubation at pH 10 is performed to favor an intense, additional multipoint immobilization between the high concentration of proximate aldehyde groups on the support surface and the high pK(a) amino groups at the enzyme surface region that participated in the first immobilization step. Interestingly, the new, highly stable trypsin derivatives were also much more active in the proteolysis of high molecular weight proteins when compared with a nonstabilized derivative prepared on CNBr-activated Sepharose. In fact, all the proteins contained a cheese whey extract had been completely proteolyzed after 6 h at pH 9 and 50°C, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Under these experimental conditions, the immobilized biocatalysts preserve more than 90% of their initial activity after 20 days. Analysis of the three-dimensional (3D) structure of the best immobilized trypsin derivative showed a surface region containing two amino terminal groups and five lysine (Lys) residues that may be responsible for this novel and interesting immobilization and stabilization. Moreover, this region is relatively far from the active site of the enzyme, which could explain the good results obtained for the hydrolysis of high-molecular weight proteins.  相似文献   

2.
The effect of the immobilization protocol and some experimental conditions (pH value and presence of acetonitrile) on the regioselective hydrolysis of triacetin to diacetin catalyzed by lipases has been studied. Lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML) were immobilized on Sepabeads (commercial available macroporous acrylic supports) activated with glutaraldehyde (covalent immobilization) or octadecyl groups (adsorption via interfacial activation). All the biocatalysts accumulated diacetin. Covalently immobilized RML was more active towards rac-methyl mandelate than the adsorbed RML. However, this covalent RML preparation presented the lowest activity towards triacetin. For this reason, this preparation was discarded as biocatalyst for this reaction. At pH 7, acyl migration occurred giving a mixture of 1,2 and 1,3 diacetin, but at pH 5.5, only 1,2 diacetin was produced. Yields were improved at acidic pH values and in the presence of 20% acetonitrile (to over 95%). RML immobilized on octadecyl Sepabeads was proposed as optimal preparation, mainly due to its higher specific activity. Each enzyme preparation presented very different properties. Moreover, changes in the reaction conditions affected the various immobilized enzymes in a different way.  相似文献   

3.
It has been found that enantioselectivity of lipases is strongly modified when their immobilization is performed by involving different areas of the enzyme surface, by promoting a different degree of multipoint covalent immobilization or by creating different environments surrounding different enzyme areas. Moreover, selectivity of some immobilized enzyme molecules was much more modulated by the experimental conditions than other derivatives. Thus, some immobilized derivatives of Candida rugosa (CRL) and C. antarctica-B (CABL) lipases are hardly enantioselective in the hydrolysis of chiral esters of (R,S)-mandelic acid under standard conditions (pH 7.0 and 25°C) (E<2). However, other derivatives of the same enzymes exhibited a very good enantioselectivity under nonstandard conditions. For example, CRL adsorbed on PEI-coated supports showed a very high enantio-preference towards S-isomer (E=200) at pH 5. On the other hand, CABL adsorbed on octyl-agarose showed an interesting enantio-preference towards the R-isomer (E=25) at pH 5 and 4°C. These biotransformations are catalyzed by isolated lipase molecules acting on fully soluble substrates and in the absence of interfacial activation against external hydrophobic interfaces. Under these conditions, lipase catalysis may be associated to important conformational changes that can be strongly modulated via biocatalyst and biotransformation engineering. In this way, selective biotransformations catalyzed by immobilized lipases in macro-aqueous systems can be easily modulated by designing different immobilized derivatives and reaction conditions.  相似文献   

4.
Microbial lipase preparations from Thermomyces lanuginosus (TLL) and Pseudomonas fluorescens (PFL) were immobilized by multipoint covalent attachment on Toyopearl AF-amino-650M resin and the most active and thermal stable derivatives used to catalyze the transesterification reaction of babassu and palm oils with ethanol in solvent-free media. For this, different activating agents, mainly glutaraldehyde, glycidol and epichlorohydrin were used and immobilization parameters were estimated based on the hydrolysis of olive oil emulsion and butyl butyrate synthesis. TLL immobilized on glyoxyl-resin allowed obtaining derivatives with the highest hydrolytic activity (HAder) and thermal stability, between 27 and 31 times more stable than the soluble lipase. Although PFL derivatives were found to be less active and thermally stables, similar formation of butyl butyrate concentrations were found for both TLL and PFL derivatives. The highest conversion into biodiesel was found in the transesterification of palm oil catalyzed by both TLL and PFL glyoxyl-derivatives.  相似文献   

5.
Epoxy supports (Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. To achieve a significant multipoint covalent attachment, the control of the experimental conditions was found to be critical. A three-step immobilization/stabilization procedure is here proposed: 1) the enzyme is firstly covalently immobilized under very mild experimental conditions (e.g. pH 7.0 and 20 degrees C); 2) the already immobilized enzyme is further incubated under more drastic conditions (higher pH values, longer incubation periods, etc.) to "facilitate" the formation of new covalent linkages between the immobilized enzyme molecule and the support; 3) the remaining groups of the support are blocked to stop any additional interaction between the enzyme and the support. Progressive establishment of new enzyme-support attachments was showed by the progressive irreversible covalent immobilization of several subunits of multi-subunits proteins (all non-covalent structures contained in crude extracts of different microorganism, penicillin G acylase and chymotrypsin). This multipoint covalent attachment enabled the significant thermostabilization of two relevant enzymes, (compared with the just immobilized derivatives): chymotrypsin (5-fold factor) and penicillin G acylase (18-fold factor). Bearing in mind that this stabilization was additive to that achieved by conventional immobilization, the final stabilization factor become 100-fold comparing soluble penicillin G acylase and optimal derivative. These stabilizations were observed also when the inactivations were promoted by the enzyme exposure to drastic pH values or the presence of cosolvents.  相似文献   

6.
The controlled and partial modification of epoxy groups of Eupergit C and EP-Sepabeads with sodium sulfide has permitted the preparation of thiol-epoxy supports. Their use allowed not only the specific immobilization of enzymes through their thiol groups via thiol-disulfide interchange, but also enzyme stabilization via multipoint covalent attachment. Penicillin G acylase (PGA) from Escherichia coli and lipase from Rhizomucor miehei were used as model enzymes. Both enzymes lacked exposed cysteine residues, but were introduced via chemical modification under very mild conditions. In the first moments of the immobilization, a certain percentage of immobilized protein could be released from the support by incubation with DTT; this confirms that the first step was via a thiol-disulfide interchange. Moreover, the promotion of some further epoxy-enzyme bonds was confirmed because no enzyme release was detected after some immobilization time by incubation with DTT. In the case of the heterodimeric PGA, it was possible to demonstrate the formation of at least one epoxy bond per enzyme subunit by analyzing with SDS-PAGE the supernatants obtained after boiling the enzyme derivatives in the presence of mercaptoethanol and SDS. Thermal inactivation studies showed that these multipoint enzyme-support attachments promoted an increase in the stability of the immobilized enzymes. In both cases, the stabilization factor was around 12-15-fold comparing optimal derivatives with their just-thiol immobilized counterparts.  相似文献   

7.
Lipase QL from Alcaligenes sp. is a quite thermostable enzyme. For example, it retains 75% of catalytic activity after incubation for 100 h at 55 °C and pH 7.0. Nevertheless, an improvement of the enzyme properties was intended via immobilization by covalent attachment to different activated supports and by adsorption on hydrophobic supports (octadecyl-sepabeads). This latter immobilization technique promotes the most interesting improvement of enzyme properties: (a) the enzyme is hyperactivated after immobilization: the immobilized preparation exhibits a 135% of catalytic activity for the hydrolysis of p-nitrophenyl propionate as compared to the soluble enzyme; (b) the thermal stability of the immobilized enzyme is highly improved: the immobilized preparation exhibits a half-life time of 12 h when incubated at 80 °C, pH 8.5 (a 25-fold stabilizing factor regarding to the soluble enzyme); (c) the optimal temperature was increased from 50 °C (soluble enzyme) up to 70 °C (hydrophobic support enzyme immobilized preparations); (d) the enantioselectivity of the enzyme for the hydrolysis of glycidyl butyrate and its dependence on the experimental conditions was significantly altered. Moreover, because the enzyme becomes reversibly but very strongly adsorbed on these highly hydrophobic supports, the lipase may be desorbed after its inactivation and the support may be reused. Very likely, adsorption occurs via interfacial activation of the lipase on the hydrophobic supports at very low ionic strength. On the other hand, all the covalent immobilization protocols used to immobilize the enzyme hardly improved the properties of the lipase.  相似文献   

8.
Lipase from Thermomyces lanuginosus (formerly Humicola lanuginosa ) was immobilized using granulation by incubating low-particle-size silica with the lipase. Granules with a particle diameter in the range 0.3-1 &#117 mm were obtained. The immobilized lipase was tested in the acylation of sucrose with vinyl laurate in mixtures of tert -amyl alcohol: dimethyl sulfoxide. Results were compared with immobilization of enzyme by adsorption on polypropylene (Accurel EP100), deposition on Celite by precipitation, and covalent attachment to Eupergit C. Granulated lipase converted >95% of sucrose into 6- O -lauroylsucrose in 6 &#117 h. Accurel-lipase was also very active, converting 70% of sucrose into monoester in 2 &#117 h. The residual activity of granules after five reaction cycles under the best reaction conditions was 72%; this value was considerably higher than the one observed for the same lipase adsorbed on Accurel (15% residual activity after five cycles).  相似文献   

9.
The attachment of enzymes, through their amino groups, to CNBr activated agarose gels has been tested as an immobilization stabilization system. By using this system, the development of a strategy to immobilize enzymes through multipoint covalent attachment has been studied. We have prepared different staphylococcal nuclease-Agarose derivatives by using Sepharose 2B gels previously activated with CNBr. Activity and stability of the derivatives obtained were very dependent on the degree of activation of the support. The most stable derivatives, prepared with the most activated supports, were 700 fold more stable than the soluble enzyme in irreversible thermal inactivation experiments, at 40d`C. In contrast, a significant loss of catalytic activity (kcat decreases down to 40%) was associated with the increase in stability. Colorimetric titration of amine groups in the stabilized derivatives suggested that enzyme-support multipoint attachment was the main reason for the observed stabilizing effect.

Index Entries: micrococcal nuclease immobilization enzyme stabilization enzyme-support multipoint attachment  相似文献   

10.
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity.  相似文献   

11.
This work exemplifies the advantages of using a battery of new heterofunctional epoxy supports to immobilize enzymes. We have compared the performance of a standard Sepabeads-epoxy support with other Sepabeads-epoxy supports partially modified with boronate, iminodiacetic, metal chelates, and ethylenediamine in the immobilization of the thermostable beta-galactosidase from Thermus sp. strain T2 as a model system. Immobilization yields depended on the support, ranging from 95% using Sepabeads-epoxy-chelate, Sepabeads-epoxy-amino, or Sepabeads-epoxy-boronic to 5% using Sepabeads-epoxy-IDA. Moreover, immobilization rates were also very different when using different supports. Remarkably, the immobilized beta-galactosidase derivatives showed very improved but different stabilities after favoring multipoint covalent attachment by long-term alkaline incubation, the enzyme immobilized on Sepabeads-epoxy-boronic being the most stable. This derivative had some subunits of the enzyme not covalently attached to the support (detected by SDS-PAGE). This is a problem if the biocatalysts were to be used in food technology. The optimization of the cross-linking with aldehyde-dextran permitted the full stabilization of the quaternary structure of the enzyme. The optimal derivative was very active in lactose hydrolysis even at 70 degrees C (over 1000 IU/g), maintaining its activity after long incubation times under these conditions and with no risk of product contamination with enzyme subunits.  相似文献   

12.
A new strategy has been developed for site-directed immobilization/rigidification of genetically modified enzymes through multipoint covalent attachment on bifunctional disulfide-glyoxyl supports. Here the mechanism is described as a two-step immobilization/rigidification protocol where the enzyme is directly immobilized by thiol-disulfide exchange between the β-thiol of the single genetically introduced cysteine and the few disulfide groups presented on the support surface (3 μmol/g). Afterward, the enzyme is uniquely rigidified by multipoint covalent attachment (MCA) between the lysine residues in the vicinity of the introduced cysteine and the many glyoxyl groups (220 μmol/g) on the support surface. Both site-directed immobilization and rigidification have been possible only on these novel bifunctional supports. In fact, this technology has made possible to elucidate the protein regions where rigidification by MCA promoted higher protein stabilizations. Hence, rigidification of vicinity of position 333 from lipase 2 from Geobacillus thermocatenulatus (BTL2) promoted a stabilization factor of 33 regarding the unipunctual site-directed immobilized derivative. In the same context, rigidification of penicillin G acylase from E. coli (PGA) through position β201 resulted in a stabilization factor of 1069. Remarkably, when PGA was site-directed rigidified through that position, it presented a half-life time of 140 h under 60% (v/v) of dioxane and 4 °C, meaning a derivative eight times more stable than the PGA randomly immobilized on glyoxyl-disulfide agarose. Herein we have opened a new scenario to optimize the stabilization of proteins via multipoint covalent immobilization, which may represent a breakthrough in tailor-made tridimensional rigidification of proteins.  相似文献   

13.
《Process Biochemistry》2010,45(10):1692-1698
For the immobilization-stabilization of multimeric enzymes, we propose a novel heterofunctional support containing a very low concentration of ionized amino groups and a very high concentration of very poorly reactive glyoxyl (aldehyde) groups. A large tetrameric enzyme, β-galactosidase from Thermus sp., was purified and dramatically stabilized with this novel support. The enzyme was first immobilized by physical adsorption via selective multipoint anionic exchange involving the largest region of the enzyme containing all enzyme subunits. Then, an additional long incubation of the immobilized derivative under alkaline conditions was performed in order to promote an intense intramolecular multipoint covalent attachment between amino groups of the adsorbed enzyme and the very stable glyoxyl groups on the support. This novel β-galactosidase derivative is the first one in which the four subunits of this enzyme become attached to a pre-existing support. Additionally, the novel amino-glyoxyl supports were much more suitable than amino-epoxy supports for intramolecular multipoint covalent immobilization of the adsorbed enzyme onto the support. In fact, at pH 7.0, the new supports covalently immobilize the physically adsorbed protein 24-fold more rapidly than epoxy supports. Furthermore, derivatives prepared on amino-glyoxyl supports preserved 85% of catalytic activity and were 5-fold more stable than derivatives prepared on amino-epoxy supports and more than 1000-fold more stable than soluble enzyme.  相似文献   

14.
β-D-Galactosidase (BGAL) from Kluyveromyces lactis was covalently immobilized to functionalized silicon dioxide nanoparticles (10-20 nm). The binding of the enzyme to the nanoparticles was confirmed by Fourier transform-infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Functionalized nanoparticles showed 87% immobilization yield. Soluble and immobilized enzyme preparation exhibited pH-optima at pH 6.5 and 7.0, respectively, with temperature optima at 35 and 40°C, respectively. Michaelis constant (K(m)) was 4.77 and 8.4mM for free and immobilized BGAL, respectively. V(max) for the soluble and immobilized enzyme was 12.25 and 13.51 U/ml, respectively. Nanoparticle immobilized BGAL demonstrated improved stability after favoring multipoint covalent attachment. Thermal stability of the immobilized enzyme was enhanced at 40, 50 and 65°C. Immobilized nanoparticle-enzyme conjugate retained more than 50% enzyme activity up to the eleventh cycle. Maximum lactose hydrolysis by immobilized BGAL was achieved at 8h.  相似文献   

15.
We have developed a strategy for immobilization-stabilization of penicillin G acylase (PGA) from Kluyvera citrophila by controlled multipoint covalent attachment to agarose-aldehyde gels. This enzyme is composed by two dissimilar subunits noncovalently bound. Thus, in this article we establish clear correlations between enzyme stabilization and the multipoint immobilization and/or between enzyme stabilization and the involvement of the two subunits in the attachment of them to the support. We have demonstrated that important thermal stabilizations of derivatives were only obtained through a very intense enzyme-support multipoint attachment involving the whole enzyme molecule. In this way, we have prepared derivatives preserving more than 90% of catalytic activity and being more than 1000-fold more stable than soluble and one-point attached enzyme. In addition, the involvement of the two subunits in the covalent attachment to the support has proved to be essential to develop interesting strategies for reactivation of inactivated enzyme molecules [e.g., by refolding of immobilized PGA after previous unfolding with urea and sodium dodecyl sulfate (SDS)]. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
In this work Candida antarctica lipase type B (CALB) was immobilized on agarose and chitosan. The influence of activation agents (glycidol, glutaraldehyde and epichlorohydrin) and immobilization time (5, 24 and 72 h) on hydrolytic activity, thermal and alkaline stabilities of the biocatalyst was evaluated. Protein concentration and enzymatic activity in the supernatant were determined during the immobilization process. More active derivatives were attained when the enzymatic extract was first purified through dialysis. The highest activities achieved were: for agarose-glyoxyl (with glycidol), 845 U/g of gel, after 72 h of immobilization; for chitosan-glutaraldehyde and agarose-glutaraldehyde, respectively, 1209 U/g of gel and 2716 U/g of gel, after 5 h of immobilization. Thermal stability was significantly increased, when compared to the soluble enzyme: 20-fold for agarose-glyoxyl (with glycidol)-CALB, 18-fold for chitosan-glutaraldehyde-CALB and 21-fold for agarose-glutaraldehyde. The best derivative, 58-fold more stable than the soluble enzyme, was obtained when CALB was immobilized on chitosan activated in two steps, using glycidol and glutaraldehyde, 72 h immobilization time. The stabilization degree of the derivative increased with the immobilization time, an indication that a multipoint covalent attachment between enzyme and the support had really occurred.  相似文献   

17.
Lipase (EC 3.1.1.3) is a tri-acylglycerol ester hydrolase, catalysing the hydrolysis of tri-, di-, and mono-acylglycerols to glycerol and fatty acids. To study the effect of adsorption of a lipase obtained from Bacillus coagulans BTS-1, its lipase was immobilized on native and activated (alkylated) matrices, i.e. silica and celite. The effect of pH, temperature, detergents, substrates, alcohols, organic solvent etc. on the stability of the immobilized enzyme was evaluated. The gluteraldahyde or formaldehyde (at 1% and 2% concentration, v/v) activated matrix was exposed to the Tris buffered lipase. The enzyme was adsorbed/entrapped more rapidly on to the activated silica than on the activated celite. The immobilized lipase showed optimal activity at 50 degrees C following one-hour incubation. The lipase was specifically more hydrolytic to the medium C-length ester (p-nitro phenyl caprylate than p-nitro phenyl laurate). The immobilization/entrapment enhanced the stability of the lipase at a relatively higher temperature (50 degrees C) and also promoted enzyme activity at an acidic pH (pH 5.5). Moreover, the immobilized lipase was quite resistant to the denaturing effect of SDS.  相似文献   

18.
Isolated Thermomyces lanuginosus lipase (TLL) was immobilized by different protocols on the polyacrylonitrile nanofibers membrane. The conditions for immobilization of TLL were optimized by investigating effect of protein concentration, time and temperature on the extent of immobilization. The effect of immobilization on the catalytic activity and stability of lipase was studied thoroughly. The immobilized TLL was used as biocatalyst for geranyl acetate synthesis with geraniol and vinyl acetate as substrates and their performance was compared with free enzyme. The TLL immobilized by physical adsorption shows higher transesterification and hydrolytic activities than that of covalently linked or native TLL. There was 32 and 9 fold increase in transesterification activity of TLL immobilized by adsorption and covalent bonding, while hydrolytic activity increases only by 3.6 and 1.8 fold respectively. The optimum conditions for immobilization in both the cases were immobilization time 90–150 min, temperature 45 °C and protein concentration of 2 mg/ml. The percentage conversion of ester was more than 90% and 66% in case of physically adsorbed and covalently bonded enzyme respectively as compared to native one. However, covalently immobilized TLL shows higher operational stability than native and physically adsorbed TLL.  相似文献   

19.
Abstract

Immobilization of enzymes from different sources on various supports in designed systems increases enzymes’ stability by protecting the active site of it from undesired effect of reaction environment. Also, immobilization decreases the cost of separation and facilities the reuse of the enzymes. Therefore, the design of new immobilization enzyme preparations has been an inevitable area of modern biotechnology. Herein, Rhizomucor miehei lipase (RML) was immobilized on montmorillonite K-10 (MMT-RML) by adsorption and in polyvinyl alcohol (PVA-RML) by entrapment to obtain a more stable and active lipase preparation. The free and immobilized lipase preparations were characterized for p-nitrophenyl palmitate hydrolysis. The apparent Michaelis–Menten (Kmapp) constant was almost the same for the free RML and PVA-RML, whereas the corresponding value was 17.7-fold lower for MMT-RML. PVA-RML and MMT-RML have shown a 1.1 and 23.8 folds higher catalytic efficiency, respectively, than that of the free RML. The half-lives of PVA-RML and MMT-RML were found to be 7.4 and 3.4 times longer than the free RML at 35?°C, respectively. PVA-RML and MMT-RML maintained 65% and 87% of their initial activities after four reuses. These results showed that the catalytic performance of RML has improved significantly by immobilization.  相似文献   

20.
《Process Biochemistry》2014,49(8):1314-1323
We report the effect of random and oriented immobilization of Rhizomucor miehei lipase (RML) on its functional properties. For this purpose, silica nanoparticles (MCM-41 and SBA-15) were prepared, characterized and functionalized by glycidyloxypropyl trimethoxysilane. Direct immobilization of RML on these supports was performed via the variety of amino acid residues on the surface of RML which promotes random immobilization. To perform oriented immobilization, partial modification of epoxy functionalized supports was carried out by introducing iminodiacetic acid groups followed by addition of Cu2+. In this way, immobilization is mainly directed via the most accessible histidine group, followed by intramolecular reaction of the other nucleophilic residues of the enzyme and the remaining epoxy groups on the support. The results showed higher thermal stability for immobilized derivatives compared to the soluble enzyme. Co-solvent stability of the derivatives was also studied in presence of six polar organic solvents (DMSO, THF, acetonitrile, 1-propanol, 2-propanol and dioxane). Influence of the immobilization procedure on activity and selectivity of the immobilized preparations was studied in selective hydrolysis of fish oil. All the derivatives discriminate between cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosahexaenoic acid (DHA) in favor of EPA. Remarkable improvement in selectivity was obtained using oriented immobilization of RML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号