首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 μm achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA·cm− 2 and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW·cm− 2.  相似文献   

2.
P.M. Sirimanne 《Thin solid films》2010,518(10):2871-2875
Highly conducting conjugated polymer composite was deposited by vapour phase polymerization. Poly[3,4-ethylenedioxythiophene:para-toluenesulfonate] (PEDOT:PTS) itself was used as the counter electrode in a dye sensitized solar cell. The maximum photocurrent of 9.7 mA/cm2, open circuit voltage of 759 mV, fill factor of 0.71 with a power conversion efficiency of 5.25% were observed for glass based wet type dye sensitized solar cell, under illumination of 100 mW/cm2. It was observed that the resistance, during operation of the dye sensitized solar cells, due to the I3 conversion was less with PEDOT:PTS coated cathodes than with standard platinum coated fluorine doped tin oxide and was confirmed by steady state electrochemical measurements.  相似文献   

3.
Photovoltaic performance of bulk heterojunction polymer solar cells (PSCs) based on poly(3-hexylthiophene) as donor and [6,6]-phenyl-C61-buytyric acid methyl ester as acceptor was improved by using a thin 8-hydroxyquinolatolithium (Liq) interlayer between polymer active layer and Al counter-electrode. By using 1.0 nm Liq, power conversion efficiency (PCE) of the PSC significantly increased to 3.20%, in comparison with a PCE of 2.40% for the PSC without Liq buffer layer. The PCE enhancement was primarily beneficial from the obviously increased short circuit current density, open circuit voltage and fill factor. This improvement is ascribed to the interfacial dipole effect, a better ohmic conductivity and the suppression of leakage current, which are all introduced by the Liq buffer layer.  相似文献   

4.
The direct writing approach of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) composite from bulk-heterojunction (BHJ) solar cell was efficiently addressed by inkjet printing technology using conventional chlorobenzene ink solution. The structure of inkjet-printed P3TH:PCBM BHJ film was fabricated by the repetitive direct writing of new line overlapped partially on former line. The best structure of P3HT:PCBM film for BHJ solar cell was observed from inkjet printing condition of around 50% of droplet overlaps with 2 wt.% BHJ ink at 25 °C of substrate temperature. The maximum power conversion efficiency reached 2.83% with an open circuit voltage of 0.62 V, a short circuit current density of 8.60 mA/cm2, and a fill factor of 0.53 under air mass 1.5 G irradiation (100 mW/cm2).  相似文献   

5.
Dichromated poly (vinyl alcohol) (DCPVA) has been proposed for protecting the pentacene active layer from organic solvents such as PGMEA. DCPVA is water-soluble, and the damage to the pentacene active layer can be minimized compared to other materials dissolved in organic solvents. In this study, the dielectric properties and leakage current density of DCPVA gate dielectric samples with different ammonium dichromate (ADC) concentrations and exposure times were obtained from 6.73 to 10.5 and 6.37 × 10− 5 to 4.87 × 10− 8 (A/cm2) respectively. Also the FTIR spectroscopy was used to determine the cross-linked DCPVA films based on the relative intensity of the vibration bands of chromium(VI) and the OH group. According to FTIR, the performance of double-gate OTFTs based on blending ADC:PVA ratio of 0.25:1 film as dielectric layers of double-gate OTFT devices to exclude the acute influence of large gate leakage current caused by excess hydroxyl groups and residual Cr6+ in dielectric layer on device performance.By analyzing the electrical performance, it was found that the fabricating method of the top-dielectric layer has a great effect on the performance of double-gate OTFTs. SEM images of pentacene microstructure show significant cracks on the top of the pentacene layer due to the swelling effect of the DCPVA polymer after post-baking. Therefore, we used vacuum drying to form photosensitive DCPVA as the top-dielectric layer of a double-gate OTFT circuit array. The use of top-dielectric and electrode layers on the top of pentacene significantly increased the performance of double-gate OTFTs. In summary, we eventually demonstrate that double-gate OTFTs using a low-temperature solution process exhibited an equivalent mobility of 0.53 cm2/Vs and on-off ratio of 8 × 103.  相似文献   

6.
Alongside with Cu2ZnSnS4 and SnS, the p-type semiconductor Cu2SnS3 also consists of only Earth abundant and low-cost elements and shows comparable opto-electronic properties, with respect to Cu2ZnSnS4 and SnS, making it a promising candidate for photovoltaic applications of the future. In this work, the ternary compound has been produced via the annealing of an electrodeposited precursor in a sulfur and tin sulfide environment. The obtained absorber layer has been structurally investigated by X-ray diffraction and results indicate the crystal structure to be monoclinic. Its optical properties have been measured via photoluminescence, where an asymmetric peak at 0.95 eV has been found. The evaluation of the photoluminescence spectrum indicates a band gap of 0.93 eV which agrees well with the results from the external quantum efficiency. Furthermore, this semiconductor layer has been processed into a photovoltaic device with a power conversion efficiency of 0.54%, a short circuit current of 17.1 mA/cm2, an open circuit voltage of 104 mV hampered by a small shunt resistance, a fill factor of 30.4%, and a maximal external quantum efficiency of just less than 60%. In addition, the potential of this Cu2SnS3 absorber layer for photovoltaic applications is discussed.  相似文献   

7.
Dye sensitized solar cell (DSSC) based on metal-free indoline dye D102 sensitized zinc oxide (ZnO) nanowires (NWs) derived from aqueous solution on seeded substrate was investigated. The morphology, composition and crystalline structure of the highly oriented ZnO NWs were characterized by field-emission scanning electron microscope, energy dispersive X-ray spectrum spectroscopy and X-ray diffraction, respectively. The chemical bond between D102 and ZnO NWs was confirmed by Fourier transfer infrared spectra. The photovoltaic property of DSSC was characterized at full sun intensity of 100 mW/cm2 (AM 1.5) with short circuit current Jsc = 14.06 mA/cm2 and energy conversion efficiency η = 2.6%.  相似文献   

8.
Chenhuan Li 《Thin solid films》2012,520(7):2520-2525
Monodisperse cadmium sulfide nanotubes (CdS NTs) with a diameter of 100 nm were synthesized on indium-doped tin oxide glass substrates using chemical bath deposition and self-sacrificial template technique. This CdS thin film was characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis spectrophotometer. This film gave a short circuit photocurrent of 4.4 mA/cm2, an open circuit photovoltage of 0.75 V, a fill factor of 0.49, and an overall conversion efficiency of 1.29% under a simulated solar illumination of 100 mW/cm2. All these photoelectrochemical properties of the films were dependent on the microstructure of the nanotubes and the thickness of the film. A facile and efficient way to prepare CdS-based photoelectrodes for photoelectrochemical cells was provided in this report.  相似文献   

9.
In this work, high‐efficiency nonfullerene polymer solar cells (PSCs) are developed based on a thiazolothiazole‐containing wide bandgap polymer PTZ1 as donor and a planar IDT‐based narrow bandgap small molecule with four side chains (IDIC) as acceptor. Through thermal annealing treatment, a power conversion efficiency (PCE) of up to 11.5% with an open circuit voltage (V oc) of 0.92 V, a short‐circuit current density (J sc) of 16.4 mA cm?2, and a fill factor of 76.2% is achieved. Furthermore, the PSCs based on PTZ1:IDIC still exhibit a relatively high PCE of 9.6% with the active layer thickness of 210 nm and a superior PCE of 10.5% with the device area of up to 0.81 cm2. These results indicate that PTZ1 is a promising polymer donor material for highly efficient fullerene‐free PSCs and large‐scale devices fabrication.  相似文献   

10.
Microcrystalline silicon carbide (μc-SiC:H) thin films in stoichiometric form were deposited from the gas mixture of monomethylsilane (MMS) and hydrogen by Hot-Wire Chemical Vapor Deposition (HWCVD). These films are highly conductive n-type. The optical gap E04 is about 3.0-3.2 eV. Such μc-SiC:H window layers were successfully applied in n-side illuminated n-i-p microcrystalline silicon thin film solar cells. By increasing the absorber layer thickness from 1 to 2.5 μm, the short circuit current density (jSC) increases from 23 to 26 mA/cm2 with Ag back contacts. By applying highly reflective ZnO/Ag back contacts, jSC = 29.6 mA/cm2 and η = 9.6% were achieved in a cell with a 2-μm-thick absorber layer.  相似文献   

11.
A double-side (bifacial) heterojunction (HJ) Si solar cell was fabricated using hot-wire chemical vapor deposition. The properties of n-type, intrinsic and p-type Si films were investigated. In these devices, the doped microcrystalline Si layers (n-type Si for emitter and p-type Si for back contact) are combined with and without a thin intrinsic amorphous Si buffer layer. The maximum temperature during the whole fabrication process was kept below 150 °C. The influence of hydrogen pre-treatment and n-Si emitter thickness on performance of solar cells have been studied. The best bifacial Si HJ solar cell (1 cm2 sample) with an intrinsic layer yielded an active area conversion efficiency of 16.4% with an open circuit voltage of 0.645 V, short circuit current of 34.8 mA/cm2 and fill factor of 0.73.  相似文献   

12.
PbSe thin films were prepared by chemical deposition using dimethylselenourea as a source of selenide ions. Depending on the duration (30 min to 4 h) and temperature (30-60 °C) of the deposition, and the substrate, the films show a high degree of preferred orientation for the (111) planes. The texture coefficients could be up to 5 for these planes. The crystallite diameters are in the 30-35 nm range, and optical bad gap, 0.4-0.7 eV. The electrical conductivity is p-type, 0.01-10 (Ω cm)− 1. These films were deposited over CdS/Sb2S3 or CdS/Sb2Se3 solar cell structures as an additional absorber. In a CdS/Sb2Se3/PbSe cell, this addition increases the short circuit current density (Jsc) from 0.2 mA/cm2 to 8.9 mA/cm2 and conversion efficiency (η) from 0.04% to 0.99%. In a CdS/Sb2S3/PbSe cell, Jsc is 5.91 mA/cm2; η, 0.98%; and open circuit voltage, 560 mV.  相似文献   

13.
Transparent conducting multilayer structured electrode of a few nm Ag layer embedded in tin oxide thin film SnOx/Ag/SnOx was fabricated on a glass by RF magnetron sputtering at room temperature. The multilayer of the SnOx(40 nm)/Ag(11 nm)/SnOx(40 nm) electrode shows the maximum optical transmittance of 87.3% at 550 nm and a quite low electrical resistivity of 6.5 × 10− 5 Ω cm, and the corresponding figure of merit (T10/RS) is equivalent to 3.6 × 10− 2 Ω− 1. A normal organic photovoltaic (OPV) structure of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/polythiophene:phenyl-C60-butyric acid methyl ester/Al was fabricated on glass/SnOx/Ag/SnOx to examine the compatibility of OPV as a transparent conducting electrode. Measured characteristic values of open circuit voltage of 0.62 V, saturation current of 8.11 mA/cm2 and fill factor of 0.54 are analogous to 0.63 V, 8.37 mA/cm2 and 0.58 of OPV on commercial glass/indium tin oxide (ITO) respectively. A resultant power conversion efficiency of 2.7% is also very comparable with the 3.09% of the same OPV structure on the commercial ITO glass as a reference, and which reveals that SnOx/Ag/SnOx can be appropriate to OPV solar cells as a sound transparent conducting electrode.  相似文献   

14.
Fluorescent photon down conversion for the improvement of the blue response of ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells and modules is investigated. Fluorescent dyes of the series Lumogen® F are analyzed by optical transmission and reflection as well as by photoluminescence measurements. A spectral transfer matrix formalism is introduced that allows to predict the suitability of a luminescent dye as a down-converter for a given solar cell from its absorption/emission properties. We find that Lumogen® F Violet 570 and Lumogen® F Yellow 083 as well as a combination of both yields improvements for Cu(In,Ga)Se2 solar modules. Particularly, we find that the short circuit current density of a Cu(In,Ga)Se2 mini-module is improved by 1.5 mA cm− 2 when applying a varnish with a combination of Lumogen® F Violet and Yellow. About 0.5 mA cm− 2 of this improvement is due to a reduced overall reflectance and an improvement of 1 mA cm− 2 results from the frequency conversion by the dyes.  相似文献   

15.
An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm2 at 100 mW/cm2 illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.  相似文献   

16.
We investigated an inverted organic photovoltaic device structure in which a densely packed ~ 100 nm thin TiO2 layer on fluorine doped conducting glass serves as anode and poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Au layer on top of the active layer serves as cathode. The active layer is comprised of a blend of poly(3-hexylthiopene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The rectification behavior of such a device is improved significantly and injection losses are minimized compared to devices without any compact TiO2 layer. Moreover, nanostructured P3HT active layer was achieved in-situ by spin coating concentrated pure P3HT and P3HT:PCBM blend and solar cell performances on thickness of the active layer were also investigated. For the inverted solar cells constructed with different concentrations of P3HT and PCBM keeping the P3HT:PCBM ratio 1:0.8 (wt.%), the highest short circuit current and efficiency was observed when the P3HT and PCBM concentration was equal to 1.5 (wt.%) and 1.2 (wt.%) respectively. This leads to highly stable and reproducible power conversion efficiency above 3.7% at 100 mW/cm2 light intensity under AM 1.5 conditions.  相似文献   

17.
The ZnO dye-sensitized solar cells (DSSCs) with different photoelectrodes were studied on the effect of CuO layer as a barrier layer toward power conversion characteristics. The structures of DSSCs based on ZnO as a photoelectrode, Eosin-Y as a dye sensitizer, iodine/iodide solution as an electrolyte and Pt/FTO as a counterelectrode. CuO powder, nanowire prepared by oxidation reaction of copper powder and CuO thin film prepared by evaporation copper thin film, were used as a layer on the top of ZnO layer to form blocking layer. The photocurrent, photovoltage and power conversion efficiency characteristics for DSSCs were measured under illumination of simulated sunlight obtained from a solar simulator with the radiant power of 100 mW/cm2. It was found that ZnO DSSCs with CuO thin film exhibited highest current density of 5.10 mA/cm2 and highest power conversion efficiency of 0.92% than those of CuO powder and nanowire. The enhancement of the power conversion efficiency can be explained in terms of the retardation of the interfacial recombination dynamics of CuO blocking layer.  相似文献   

18.
Well-aligned ZnO nanowire arrays were grown on indium tin oxide coated glass substrates by a facile chemical bath deposition technique. Morphologies, crystalline structure and optical transmission were investigated by field-emission scanning electron microscope, X-ray diffraction and UV–visible transmission spectrum, respectively. The results showed that ZnO nanowires were aligned in a dense array approximately perpendicular to substrate surface, they were wurtzite-structured (hexagonal) ZnO. In addition, the nanowire arrays exhibited high optical transmission (>85 %) in the visible region. Furthermore, an inverted inorganic/polymer hybrid solar cell was built using as-grown well-aligned ZnO nanowire arrays as inorganic layer, under the AM 1.5 illumination with a light intensity of 80 mW/cm2, the device showed an open circuit voltage (Voc) of 0.44 V, a short circuit current (Jsc) of 3.23 mA/cm2, a fill-factor of 38 %, and a power conversion efficiency of 0.68 %.  相似文献   

19.
Efficient organic solar cells (OSCs) are fabricated using polymer PM6 as donor, and IPTBO‐4Cl and MF1 as acceptors. The power conversion efficiency (PCE) of IPTBO‐4Cl based and MF1 based binary OSCs individually arrive to 14.94% and 12.07%, exhibiting markedly different short circuit current density (JSC) of 23.18 mA cm?2 versus 17.01 mA cm?2, fill factor (FF) of 72.17% versus 78.18% and similar open circuit voltage (VOC) of 0.893 V versus 0.908 V. The two acceptors, IPTBO‐4Cl and MF1, have similar lowest unoccupied molecular orbital levels, which is beneficial for efficient electron transport in the ternary active layer. The PCE of optimized ternary OSCs arrives to 15.74% by incorporating 30 wt% MF1 in acceptors, resulting from the simultaneously increased JSC of 23.20 mA cm?2, VOC of 0.897 V, and FF of 75.64% in comparison with IPTBO‐4Cl based binary OSCs. The gradually increased FFs of ternary OSCs indicate the well‐optimized phase separation and molecular arrangement with MF1 as morphology regulator. This work may provide a new viewpoint for selecting an appropriate third component to achieve efficient ternary OSCs from materials and photovoltaic parameters of two binary OSCs.  相似文献   

20.
An experimental method is developed for contact resistivity measurements of a buried interface in polycrystalline silicon (poly-Si) thin-film solar cell devices on aluminum doped zinc oxide (ZnO:Al) layers. The solar cell concept comprises a glass substrate covered with a temperature-stable ZnO:Al film as transparent front contact layer, a poly-Si n+/p/p+ cell, as well as a metal back contact. Glass/ZnO:Al/poly-Si/metal test stripe structures are fabricated by photolithographic techniques with the ZnO:Al stripes locally bared by laser ablation. The high-temperature treatments during poly-Si fabrication, e.g. a several hours lasting high-temperature step at 600 °C, are found to have no detrimental impact on the ZnO:Al/Si interface contact resistivity. All measured ρC values range well below 0.4 Ω cm2 corresponding to a relative power loss ΔP below 3% for a solar cell with 500 mV open circuit voltage and 30 mA/cm2 short circuit current density. By inclusion of a silicon nitride (SiNx) diffusion barrier between ZnO:Al and poly-Si the electrical material quality of the poly-Si absorber can be significantly enhanced. Even in this case, the contact resistivity remains below 0.4 Ω cm2 if the diffusion barrier has a thickness smaller than 10 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号