首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以无机高分子絮凝剂聚硅硫酸铁(PFSS)和非离子聚丙烯酰胺(NPAM)为原料,采用不同的配比,制备出复合絮凝剂PFSS-PAM.进行pH值、zeta电位、电导、硅铁聚合态含量、红外谱图表征和絮凝性能实验,确定絮凝效果最佳的PFSS与PAM的配比.结果表明:V(PFSS)∶V(PAM) =0.2的PFSS-PAM的稳定时间为5d,n(Si)∶n(Fe)=1,V(PFSS)∶V(PAM) =0.5时,投加量为0.4~1.2 mg/L,PFSS-PAM处理制药废水的去浊率可达99.1%,COD去除率可达26.6%.  相似文献   

2.
试验选取菌株PY-M3和PY-F6所产絮凝剂,研究了微生物絮凝剂的添加量、水的pH值、高岭土溶液的浓度、助凝剂的种类、助凝剂的添加量和沉淀时间对絮凝效果的影响,并研究了絮凝剂的絮凝活性分布和微生物絮凝剂的热稳定性,对絮凝效果好的菌株进行了鉴定。结果表明,菌株PY-F6的最佳絮凝条件为絮凝剂投加量30mL/L,pH 8,高岭土悬浊液浓度3g/L,Ca~(2+)的助凝效果最好,质量浓度1%的CaCl_2投加量20mL/L,静置时间20min,菌株PY-M3的最佳絮凝条件为絮凝剂投加量30mL/L,pH 8,高岭土悬浊液浓度3g/L,Ca~(2+)的助凝效果最好,质量浓度1%的CaCl_2投加量30mL/L,静置时间40min;在最佳絮凝条件下,PY-F6絮凝剂的絮凝率达到99%,PY-M3絮凝剂的絮凝率达到96%;两种微生物絮凝剂的活性成分主要存在于上清液中,为菌体细胞分泌的胞外代谢产物而非菌体本身;PY-M3絮凝剂的热稳定性较差,PY-F6絮凝剂的热稳定性较好;PY-F6菌株可以鉴定为黄三素链霉菌(Streptomyces flavotricini)。  相似文献   

3.
复合型微生物絮凝剂的絮凝作用   总被引:11,自引:0,他引:11  
复合型微生物絮凝剂是采用廉价底物经过多株菌混合发酵后制得的微生物絮凝剂。通过实验测定复合型微生物絮凝剂的絮凝效果。以松花江源水和强酸性废水为对象,测定出了絮凝剂的最佳投加量、最佳pH值范围和助凝剂CaCl2的投加量。实验表明,对于不同的水质,絮凝剂投加量不同,松花江源水的最佳投加量在14mL/L左右;对于酸性废水,投加量要高一些。最佳pH值在7.5左右。复合型微生物絮凝剂需要投加助凝剂才能起到絮凝效果,投加10%氯化钙1.5mL/L就可以达到最佳絮凝效果。温度对絮凝率的影响极小,并且沉降曲线表明,在10℃时,沉降所需时间最短。  相似文献   

4.
通过优化聚硅酸硫酸铝铁中铝硅铁比,配制适宜的聚硅酸硫酸铝铁絮凝剂并进行钨铋选矿废水处理,为多金属矿选矿废水稳定达标排放提供技术依据.研究结果表明:在w(SiO2)=2.0%,n(Fe+ Al)/n(Si)=2∶1,n(Fe)/n(A1)=1∶1的适宜配比下制得的聚硅酸硫酸铝铁絮凝剂,在1.5%投加量下,可使钨铋选矿废水浊度去除率达95%以上,处理后废水浊度为70 NTU; COD去除率达70%,处理后废水中COD含量为72 mg/L; As,Be和Pb去除率均达90%以上,处理后废水中As,Be和Pb质量浓度分别为34,0.2和13 μtg/L,处理后废水达到GB 8978-1996(《污水综合排放标准》)一级标准.  相似文献   

5.
壳聚糖-铁絮凝剂的制备及其絮凝性能   总被引:4,自引:0,他引:4  
利用无机嵌入有机的方式改性壳聚糖制成壳聚糖-铁絮凝剂,使用高岭土悬浊液对其絮凝性能进行了考察。结果表明,当壳聚糖-铁絮凝剂(CTS-Fe)的投加量为5mg/L,m(CTS)∶m(Fe)=2∶1,pH=7时,絮凝效果最佳,沉降率为88.75%。并对壳聚糖-铁絮凝剂、壳聚糖、聚合氯化铁和壳聚糖-聚合氯化铁复合絮凝剂对高岭土悬浊液的处理效果进行了对比研究。结果表明,壳聚糖-铁絮凝剂的处理效果最好,且用量较少。  相似文献   

6.
以Fenton法处理钽铌冶炼废水产生的铁泥为原料,制备了聚硅酸硫酸铁(PFSS)絮凝剂.研究了PFSS的制备工艺条件、PFSS投加量、废水的 pH值和搅拌时间对PFSS絮凝性能的影响.结果表明,当制备工艺条件中的SiO2质量分数w(SiO2)为1.00%,A,B混合液pH值为3.00,n(Fe)∶n(Si)为1∶1,活化温度为40 ℃,活化时间为2 h时,得到的PFSS具有最好的絮凝性能.用PFSS絮凝剂处理钨铋选矿废水,PFSS投加量为废水体积分数0.10%,废水pH值为7.00,搅拌2 min后,废水浊度去除率达99.9%,COD去除率达77.8%;废水中Pb和As去除率分别达99.0%和97.4%,Be去除率几乎达100%.处理后废水浊度为0.32 NTU,COD含量降至72.2 mg/L,废水中Pb和As质量浓度分别降至0.08和0.03 mg/L,Be未检出.处理后废水达到GB 8979-1996一级排放标准.  相似文献   

7.
以双氰胺、甲醛为原料并引入改性剂氯化铵,在氯化铝的催化下合成了一种高效脱色絮凝剂MDF.以活性艳橙K-G模拟印染废水的脱色率为考核指标,考察了改性剂用量、反应物料配比、催化剂用量等因素对产品性能的影响.研究结果表明,脱色絮凝剂MDF最佳的合成条件为反应温度75℃,反应时间4 h,反应物配比为n(甲醛)∶n(双氰胺)∶n(氯化铵)∶n(氯化铝)=2.5∶1∶0.75∶0.05.脱色絮凝剂MDF对活性艳橙K-G模拟印染废水的脱色率可达98.5%,最佳药剂投加量为100 mg/L.  相似文献   

8.
聚硅酸硫酸铝铁(PSAFS)的合成   总被引:7,自引:0,他引:7  
提出了一种新型无机高分子絮凝剂聚合硅酸硫酸铝铁(PSAFS),PSAFS保留了铝铁各自均聚物的优点,克服了聚合氯化铝(PAC)处理后水样中残留铝浓度较高和聚合氯化铁(PFC)稳定性较差的一些缺点,因此,近年来引起国内外的普遍关注.采用水玻璃、硫酸铝和硫酸铁为原料制备聚合硅酸硫酸铝铁,研究了各种因素对该无机高分子絮凝剂絮凝行为的影响,分析了聚硅酸的稳定性、Al/Fe/Si的摩尔比值与絮凝行为的关系,得到了最佳合成条件.  相似文献   

9.
为使废弃物可资源化利用,以七台河电厂排出的粉煤灰为原料,通过焙烧活化、浸硅、提铝、聚合等工艺,制备聚合硅酸铝铁絮凝剂。煤泥水絮凝实验表明:当pH为3,熟化温度为60℃,n(Si):(n(Al)+n(Fe))为1∶1,n(Al)∶n(Fe)为2∶1时,制备的絮凝剂的絮凝效果最佳,煤泥水剩余浊度达98 NTU。聚硅酸铁铝的红外光谱分析显示,该絮凝剂中含有羟基络合物。该研究可为电厂废弃物利用提供新思路。  相似文献   

10.
为了提高絮凝剂的絮凝性能以提升养殖污水的处理效率,利用壳聚糖具有的絮凝特性,并依据壳聚糖与絮凝剂之间的共聚反应,设计了5种不同浓度组合基质的处理,分析了絮凝剂投加量、生物絮凝剂与壳聚糖复配比例、pH等对COD去除率的影响.结果表明:在投加量为30.0 mg/L,pH=5,生物絮凝剂与壳聚糖复配比(V/V)为21∶9时,对养殖污水COD的去除率最高.壳聚糖与生物絮凝剂复配获得的复合絮凝剂对COD,NH3—N,BOD,SS及TP污水指标的去除率分别达到85.2%,81.0%,85.0%,58.3%和27.5%.  相似文献   

11.
针对处理低温低浊水时残余铝过高及浊度难去除的问题,采用复合型生物絮凝剂(CBF)处理低温低浊水源水,通过L16(45)正交实验研究了复合型絮凝剂投加量、pH、助凝剂Ca2+投加量、沉降时间和混凝水力条件5个因素对絮凝效果的影响。结果表明,浊度及铝去除率的影响因素均为:pH>水力条件>沉降时间>助凝剂Ca2+投加量>絮凝剂投加量。浊度去除率和铝去除率最佳的絮凝条件:絮凝剂投加量为10 mg/L;助凝剂Ca2+投加量为1.5 mg/L;pH为8.0;水力条件为搅拌速度160 r/min,搅拌时间为40 s;沉降时间为30 min。此时浊度去除率达到88.34%,残余Al去除率为92.43%。研究为应用CBF处理低温低浊水提供了基础数据和技术支持。  相似文献   

12.
为考察复合絮凝剂(壳聚糖、单宁)的絮凝活性,优化荷叶水提液絮凝工艺条件,对絮凝剂的投加量、温度、搅拌速度进行了水平正交实验.实验结果表明荷叶水提液的最佳工艺条件为:壳聚糖投加量为1.071g/L,单宁投加量为5.357g/L,温度为30℃,转速为60r/min.并在此工艺条件的基础上进行絮凝剂的失活动力学实验研究.实验表明,荷叶水提液在25℃—30℃范围内絮凝选择性好,絮凝活性高;高于30℃时,絮凝活性显著下降.同时验证了复合絮凝剂的失活动力学符合一级反应的失活动力学模型,并讨论了时间、温度同絮凝率及黄酮损失率的关系,并由此推算出失活速率常数、活化能等动力学函数值.为荷叶水提液的絮凝工艺研究及操作条件的选择提供了有价值的理论依据.  相似文献   

13.
新型高浓度聚硅氯化铝水解形态与絮凝基础理论研究   总被引:3,自引:0,他引:3  
以铝酸钠为碱化剂,采用缓慢滴碱法合成了高浓度(2.0mol·L-1左右)具有不同Si/Al摩尔比γ(Si/Al)的聚硫氯化铝,研究了铝的水解聚合形态和除浊效果.AlFerron和AlNMR分析结果表明,随着γ(Si/Al)的增加,Al13/Alb形态的含量逐渐减小,Al单体和Al高聚体形态含量逐渐增大.烧杯实验结果表明PASC浓度高、最佳投加量低,絮凝效果好,pH适用范围广,可显著降低处理成本.Al水解形态与絮凝效果的研究表明以铝酸钠为碱化剂制备的高浓度絮凝剂的絮凝效果不宜用Al13/Alb含量高低来表征.  相似文献   

14.
以氧化石墨烯(GO)为絮凝剂,以水溶性阳离子型染料亚甲基蓝(MB)为处理对象,研究了GO对MB的絮凝效果,拟突破传统絮凝剂不能有效去除可溶性染料的瓶颈. 通过改进的Hummers法制备了GO,利用SEM、XRD、FT-IR对其进行了表征. 探讨了染料初始质量浓度、絮凝剂投加量、溶液pH以及搅拌时间对絮凝效果的影响,并通过测定GO、MB、反应前后溶液的电位和反应前后物质的红外光谱,分析了可能存在的絮凝机理. 同时,比较了几种常用的无机、有机絮凝剂对MB的絮凝效果. 结果表明:当pH=4,染料初始质量浓度为70 mg/L,絮凝剂投加量为180 mg/L,絮凝时间为9 min时,絮凝效率达到95%. 电性中和对絮凝过程起着主要作用,同时还存在吸附架桥作用. 与其他常用絮凝剂相比,GO具有投加量少、去除率高、pH适用范围广等优点,是一种具有广阔应用前景的絮凝剂.  相似文献   

15.
为降低饮用水中铝离子含量并提高浊度去除率,研制了一种新型自来水絮凝剂(简称PCMS).该絮凝剂以聚合氯化铝铁(PAFC)、壳聚糖(CTS)和改性淀粉(MS)为主要组分,其配比为V(0.1wt%PAFC)∶V(0.001wt%CTS)∶V(3wt%MS)=25∶5∶7.在室温、中性条件下、絮凝剂投加量达到5 mg.L-1时,原水的浊度去除率可达98%以上,铝离子去除率可达67.3%.考察了絮凝剂投加量、搅拌时间、速度、温度、酸碱度等因素对其絮凝效果的影响.结果表明,絮凝剂的投加量对絮凝效果影响最大,其他因素则影响较小.相对于传统单一的絮凝剂如聚合氯化铝(PAC)、聚合硫酸铁(PFS)、硫酸铝等,PCMS投加量更小,处理效果更好,性价比更高.  相似文献   

16.
刘瑾 《科技信息》2010,(23):401-401,417
采用活性炭、H2O2和硫酸铝相结合的吸附—催化氧化—絮凝法联合处理某制药厂废水。考察了活性炭用量、H2O2用量和絮凝剂用量对COD去除率的影响。实验结果表明,废水pH为4,反应90min后,絮凝实验调pH为7的条件下,H2O2加入量为16.7mL/L、活性炭投加量为10g/L,硫酸铝溶液用量283mL/L进行絮凝沉淀,效果最佳,废水COD去除率达到50%以上。  相似文献   

17.
将磁粉与聚合氯化铝(PAC)、聚丙烯酰胺(PAM)联用组成复合絮凝剂来处理热轧废水。在改变絮凝剂各组分投加量的条件下进行絮凝试验,分析热轧废水的浊度和含油量变化,研究复合絮凝剂的最优投加方案。试验结果表明,当磁粉、PAC和PAM的投加量分别为5mg/L、15mg/L和1.5mg/L时,热轧废水的净化效果最佳,其浊度由82.6NTU降为10.5NTU,含油量由15.62mg/L降为7.44mg/L。  相似文献   

18.
以氯化铝、硫酸铁为主要原料制备了系列聚合氯化硫酸铝铁(PAFCS)絮凝剂.探讨了不同A1/Fe摩尔比、碱化度B、稳定剂用量、投加量等因素对混凝效果的影响,并考察了PAFCS预处理垃圾渗滤液的混凝效果.结果表明:在pH=6-8、A1/Fe摩尔比为4∶1、B=1.0、[A l] [Fe]=0.08 mol/L时混凝效果最佳,各项混凝性能都明显优于PAC和PFS.  相似文献   

19.
微生物絮凝剂的提纯及絮凝条件研究   总被引:6,自引:0,他引:6  
絮凝剂生产菌(Pseudomonassp.F-8)的发酵液经离心沉淀后,其上清液经丙酮萃取,乙醚洗涤和冷冻干燥后即得到絮凝剂干制品.通过实验,确定该絮凝剂适宜的投加量为4 mL(浓度为0.1%),助凝剂CaO(浓度为1%)适宜投加量为2 mL,絮凝作用的最适pH为8.0,最适温度为40℃,搅拌速度为200 r/min.废水处理实验表明,对几种实际废水具有良好的净化效果.  相似文献   

20.
为回收利用高炉渣中的有效元素,以高镁炼铁炉渣的硫酸酸解液为原料,采用絮凝脱硅法分离回收硅元素。研究絮凝剂种类、絮凝温度、絮凝时间、絮凝剂质量分数和絮凝剂加入量等因素对脱硅效果的影响,并利用X射线衍射(XRD)与扫描电镜-能谱分析(SEM-EDS)对脱硅渣的物相和结构进行分析。研究结果表明:阳离子高分子絮凝剂能有效脱除酸解液中带负电的硅酸分子。在反应初期,随絮凝温度、时间、絮凝剂质量分数和絮凝剂加入量的增大,脱硅率增大;絮凝温度继续增大,絮凝剂聚合氯化铝和PDADMAC自身受到温度影响,脱硅效果下降;絮凝剂质量分数继续增大,聚丙烯酰胺发生“架桥保护”,脱硅效果下降。最佳反应条件如下:脱硅絮凝剂为聚丙烯酰胺,絮凝温度为50℃,絮凝时间为1.5 h,脱硅絮凝剂质量分数为1%,每50 mL酸解夜中,脱硅絮凝剂加入量为8 g。在最佳反应条件下,有效脱除了高炉渣酸解液中的硅元素,硅元素质量浓度由1 366 mg/L降低到235 mg/L,脱硅渣中硅氧含量(质量分数)达95.8%,可用于制备水玻璃、硅肥等产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号