首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We study the interpixel cross talk introduced to digital holographic data storage by use of a multilevel phase mask at the data-input plane. We evaluate numerically the intensity distribution at the output detector for Fourier plane hologram storage in a limited-aperture storage medium. Only the effect at an output pixel of interpixel cross talk from the four horizontal and vertical neighboring pixels is considered, permitting systematic evaluation of all possibilities. For random two-level and pseudorandom six-level phase masks, the influence of the pixel fill factor, as well as the aperture size of the storage medium, is studied. Our simulations show that, for a given aperture size, a random two-level mask is more susceptible to interpixel cross talk than is a pseudorandom six-level mask. Decreasing the pixel fill factor below 94% with a pseudorandom six-level phase mask makes it theoretically possible to have a system with no errors from interpixel cross talk if one particular 5-pixel pattern is forbidden through modulation coding. Reducing the input fill factor below 85% means that no patterns need to be excluded.  相似文献   

2.
Wang Z  Jin G  He Q  Wu M 《Applied optics》2007,46(23):5770-5778
In a spectroholographic storage system the defocusing method is often used to obtain spectrum uniformity and improve the quality of the recorded information. However, defocusing introduces vignette and stronger interpixel cross talk in the marginal field of view. We report a method that defocuses the aperture and medium together. Based on the pixel spread function, two inequalities are introduced to estimate the upper and lower bounds of the energy received at the CCD. We balance the spectrum uniformity with interpixel cross talk and vignette and then allow the designer to select optimal structure values of the defocusing spectroholographic storage system, i.e., the defocusing value, aperture size, and fill factors for the spatial light modulator and CCD.  相似文献   

3.
We investigate the effect of data page misregistration, and its subsequent correction in postprocessing, on the storage density of holographic data storage systems. A numerical simulation is used to obtain the bit-error rate as a function of hologram aperture, page misregistration, pixel fill factors, and Gaussian additive intensity noise. Postprocessing of simulated data pages is performed by a nonlinear pixel shift compensation algorithm [Opt. Lett. 26, 542 (2001)]. The performance of this algorithm is analyzed in the presence of noise by determining the achievable areal density. The impact of inaccurate measurements of page misregistration is also investigated. Results show that the shift-compensation algorithm can provide almost complete immunity to page misregistration, although at some penalty to the baseline areal density offered by a system with zero tolerance to misalignment.  相似文献   

4.
King BM  Neifeld MA 《Applied optics》2000,39(35):6681-6688
In page-oriented memories, data pages commonly consist of comparable numbers of on and off pixels. Data-page sparsity is defined by reduction of the number of on pixels per page, leading to an increased diffracted power into each pixel. When page retrieval is dominated by a fixed noise floor, the number of pages in the memory is limited by the pixel diffraction efficiency. Sparsity increases the number of storable pages while reducing the amount of user information per page. A detailed analysis of sparsity in volume holographic memories shows that the total memory capacity can be increased by 15% by use of data pages that contain on average 25% on pixels. Sparsity also helps to reduce the effects of interpixel cross talk by strongly reducing the probability that worst-case pixel patterns (e.g., blocks of on pixels with a center off pixel) will occur in the data page. Enumeration block coding techniques provide construction of sparse-data pages with minimal overhead. In addition, enumeration coding offers maximum-likelihood detection with low encoding-decoding latency. We discuss the theoretical advantages of data-page sparsity. We also present experimental results that demonstrate the proposed capacity gain. The experiment verifies that it is practical to construct and use sparse-data pages that result in an overall user capacity gain of 16% subject to a page retrieval bit-error rate of 10(-4).  相似文献   

5.
Diffractive optical elements (DOEs) realized by spatial light modulators (SLMs) often have features that distinguish them from most conventional, static DOEs: strong coupling between phase and amplitude modulation, a modulation versus steering parameter characteristic that may not be precisely known (and may vary with, e.g., temperature), and deadspace effects and interpixel cross talk. For an optimal function of the DOE, e.g. as a multiple-beam splitter, the DOE design must account for these artifacts. We present an iterative design method in which the optimal setting of each SLM pixel is carefully chosen by considering the SLM artifacts and the design targets. For instance, the deadspace-interpixel effects are modeled by dividing the pixel to be optimized, and its nearest neighbors, into a number of subareas, each with its unique response and far-field contribution. Besides the customary intensity control, the design targets can also include phase control of the optical field in one or more of the beams in the beam splitter. We show how this can be used to cancel a strong unwanted zeroth-order beam, which results from using a slightly incorrect modulation characteristic for the SLM, by purposely sending a beam in the same direction but with the opposite phase. All the designs have been implemented on the 256 x 256 central pixels of a reflective liquid crystal on silicon SLM with a selected input polarization state and a direction of transmission axis of the output polarizer such that for the available different pixel settings a phase modulation of ~2pi rad could be obtained, accompanied by an intensity modulation depth as high as >95%.  相似文献   

6.
Gao Q  Kostuk R 《Applied optics》1997,36(20):4853-4861
Various effects associated with using a random phase mask in holographic data storage are analyzed. It is shown that the nonlinear nature of recording a phase hologram coupled with the highly nonuniform profile of the object beam is the major source of interpixel cross talk. It is also shown that, although the nonlinear effects are reduced by an increase in the reference-to-object beam ratio, the scattering noise is increased. Thus an optimal beam ratio must be used to maximize the signal-to-noise ratio. It is demonstrated as well that the interpixel interference noise can be suppressed effectively by use of a multilevel pseudorandom phase mask, which also significantly reduces the nonlinear noise. These findings are supported by experimental results that show the signal-to-noise ratio and efficiency are improved significantly by use of a six-level pseudorandom phase mask.  相似文献   

7.
A stochastic model of the DNA microarray image pixels is presented. The model includes spot pixel intensity distribution, interpixel correlations and the intensity distribution of background noise. The data is indicative of a small exponential additive noise process and a larger Gaussian fluctuation that scales with spot intensity. Correlations are observed among pixels in the spot and between test and control images. The correlated fluctuations may be attributed to variations across each spot in the amount of DNA placed on the spot during the array fabrication process. The model may be used in gene expression estimation algorithm development, both to test new algorithms through simulation and to develop optimum algorithms. The model should also be easily adapted to new array based technologies in proteomics.  相似文献   

8.
The noise characteristics of a stacked CMOS active pixel sensor (SCAPS) for incident charged particles have been analyzed under 4.5 keV Si+ ion irradiation. The source of SCAPS dark current was found to change from thermal to electron leakage with decreasing device temperature. Leakage current at charge integration part in a pixel has been reduced to 0.1 electrons s−1 at 77 K. The incident ion signals are computed by subtracting reset frame values from each frame using a non-destructive readout operation. With increase of irradiated ions, the dominant noise source changed from read noise, and shot noise from the incident ions, to signal frame fixed-pattern noise from variations in sensitivity between pixels. Pixel read noise is equivalent to ten incident ions. The charge of an incident ion is converted to 1.5 electrons in the pixel capacitor. Shot noise corresponds to the statistical fluctuation of incident ions. Signal frame fixed-pattern noise is 0.7% of the signal. By comparing full well conditions to noise floor, a dynamic range of 80 dB is achieved. SCPAS is useful as a two-dimensional detector for microanalyses such as stigmatic secondary ion mass spectrometry.  相似文献   

9.
We utilized and investigated the unique dependence of the magnitude and phase of the response on thermal cross talk between bolometer pixels in an array to measure the response of the devices through fewer monitoring devices. We show the feasibility of the proposed readout technique by use of two source pixels in an array, as the image-mapping devices, and one optically shielded pixel as the readout device. While the sensing pixels were electrical-contact free, the readout device was current biased in 4-probe current-bias configuration. Both the phase and the magnitude of the response due to the cross talk in the array were found to be strongly dependent on the modulation frequency and the distance between the sensing and the readout pixels. A series of measurements were designed to extract the response of each single-sensing pixel. By combining the measured data, the response of individual pixels could be extracted through the interpolation of the mapped responses.  相似文献   

10.
The cross talk noise-to-signal ratio (NSR) of an angle-multiplexed holographic data storage system is studied, and we propose a method to determine the optimized multiplexing spacing with which the cross talk noise can be less than the conventional method. In our method, the optimization location at the image plane can be chosen arbitrarily, so the multiplexing of asymmetrical image patterns can be optimized. In particular, we investigate the 90° scheme and the transmission scheme angle multiplexing. For the 90° scheme, a holographic medium with a higher refractive index is recommended for cross talk-limited multiplexing. For the transmission scheme, a holographic medium with a lower refractive index is recommended for angular range-limited multiplexing. In addition, for the transmission scheme, a larger angle between the object arm and the reference arm results in less cross talk noise, whereas the highest storage density is achieved at a 45° angle.  相似文献   

11.
In this paper, a pixel structure called the optimal pseudoactive pixel sensor (OPAPS) is proposed and analyzed for the applications of CMOS imagers. The shared zero-biased-buffer in the pixel is used to suppress both dark current of photodiode and leakage current of pixel switches by keeping both biases of photodiode and parasitic pn junctions in the pixel bus at zero voltage or near zero voltage. The factor of photocurrent-to-dark-current ratio per pixel area (PDRPA) is defined to characterize the performance of the OPAPS structure. It is found that a zero-biased-buffer shared by four pixels can achieve the highest PDRPA. In addition, the column sampling circuits and output correlated double sampling circuits are also used to suppress fixed-pattern noise, clock feedthrough noise, and channel charge injection. An experimental chip of the proposed OPAPS CMOS imager with the format of 352/spl times/288 (CIF) has been designed and fabricated by using 0.25-/spl mu/m single-poly-five-level-metal (1P5M) N-well CMOS process. In the fabricated CMOS imager, one shared zero-biased-buffer is used for four pixels where the PDRPA is equal to 47.29 /spl mu/m/sup -2/. The fabricated OPAPS CMOS imager has a pixel size of 8.2/spl times/.2 /spl mu/m, fill factor of 42%, and chip size of 3630/spl times/3390 /spl mu/m. Moreover, the measured maximum frame rate is 30 frames/s and the dark current is 82 pA/cm/sup 2/. Additionally, the measured optical dynamic range is 65 dB. It is found that the proposed OPAPS structure has lower dark current and higher optical dynamic range as compared with the active pixel sensor (APS) and the conventional passive pixel sensor (PPS). Thus, the proposed OPAPS structure has high potential for the applications of high-quality and large-array-size CMOS imagers.  相似文献   

12.
We have used a PdSi focal-plane array detector to measure short-wave infrared Raman spectra of pure compounds and human tissue. Raman bands of the pure compounds are clearly visible in the spectra, and a calcification feature at 960 cm(-1) is readily identifiable in the spectra of diseased human aorta. The performance characteristics of our detection device were good; dark noise contributed approximately 60 (electrons/s)/pixel, and the read noise was ~50 rms electrons/pixel. The primary noise in the spectra was due to fixed-pattern noise, which is the variation in measured signal across a detector when it is uniformly illuminated.  相似文献   

13.
Raj K  Athale RA 《Applied optics》1995,34(29):6752-6757
Analog optical processors that calculate a product of two matrices in a single clock cycle are analyzed for cross talk. It is determined that the sidelobes from the sinc function corresponding to the individual pixels of the spatial light modulator that encodes the first matrix are the main source of the cross talk. This cross talk can be reduced substantially by the use of an apodizing function for individual pixels of the spatial light modulator. This scheme for cross-talk reduction is verified by computer simulation. Initial experimental results are presented that demonstrate the gray-scale performance of the matrix-matrix multiplier as well as sidelobe suppression with apodization.  相似文献   

14.
Vadde V  Kumar BV 《Applied optics》1999,38(20):4374-4386
We present two different channel models (the magnitude model and the intensity model) for a pixel-matched volume holographic data storage system that employs the 4-focal-length architecture. First, a framework to describe the channel models is developed. We evaluate the linearity of the channel models by comparing data values obtained from diffraction-limited interference with data values predicted by the channel models. The models are evaluated for linearity and equalization gain under different storage and read-back conditions, such as fill factors, apertures, and contrast ratios. Bit error rate results obtained by use of linear equalization methods in conjunction with the channel models developed are also presented. Our results suggest that the magnitude model leads to better performance when the fill factors are small, whereas the intensity model appears to be more appropriate for the high-fill-factor cases. The magnitude model, when suitable, appears to provide a storage density improvement of as great as 65%, whereas the intensity model seems capable of providing as much as 15% density gain through deconvolution. The optimum aperture for storage seems to be close to the Nyquist aperture.  相似文献   

15.
We present an analysis of the performance limit of an adaptive multichannel free-space optical interconnect based on a spatial light modulator (SLM). The SLM function is to provide an active alignment of the signal beam in the detector plane. A thorough cross-talk analysis based on the diffractive properties of an ideal SLM in an isoplanatic optical system is shown. We analyze the performance in terms of the bit-error rate (BER) due to cross talk between different channels in the optical interconnect for different alignment states and for different phase-modulation schemes.  相似文献   

16.
High-density optical recording using a solid immersion lens   总被引:4,自引:0,他引:4  
Ichimura I  Hayashi S  Kino GS 《Applied optics》1997,36(19):4339-4348
A solid immersion lens attached to a conventional objective increases the effective numerical aperture (NA(eff)) of an optical pickup and yields an areal recording density proportional to (NA(eff))(2). One version of this device, with an effective (NA(eff)) of 1.7, should be capable of very high density storage but would probably need a sealed system. Another simple configuration enables the use of this method for optical data storage in an unsealed environment and extends the spatial cutoff frequency 1.5 times. Experiments with these devices are compared with the full vector field theory of this type of imaging system.  相似文献   

17.
Xun X  Cohn RW 《Applied optics》2004,43(35):6400-6406
A new 512 x 512 pixel phase-only spatial light modulator (SLM) has been found to deviate from being flat by several wavelengths. Also, the retardation of the SLM relative to voltage varies across the device by as much as 0.25 wavelength. The birefringence of each pixel as a function of address voltage is measured from the intensity of the SLM between crossed polarizers. To these responses are added a reference spatial phase measured by phase shifting interferometry for a single address voltage. Fits to the measured data facilitate the compensation of the SLM to a root-mean-square wave-front error of 0.06 wavelength. The application of these corrections to flatten the full aperture of the SLM sharpens the focal plane spot and reduces the distortion of computer-designed diffraction patterns.  相似文献   

18.
We focus on the investigation of multilayer recording in microholographic data storage. We have developed a numerical model for calculating the electromagnetic scattering from thick microholographic gratings using the Born approximation and the direct volume integral. The signal-to-noise ratio and bit error rate were calculated to estimate the noise arising from interlayer and interhologram cross talk. Measurements were done to prove the validity of the model. The results of our calculations and the measurements show good agreement. We present the application of the model to the investigation of confocal filtering at the image plane and to the evaluation of positioning and wavelength tolerances.  相似文献   

19.
一种改进的亚像素算法   总被引:7,自引:1,他引:7  
郭玉波  姚郁  遆晓光 《光电工程》2006,33(10):137-140
传统的灰度重心法是一种用于对称目标的亚像素定位技术,但其抗噪声性能较差。针对这一问题,本文提出一种改进算法,通过将目标区域划分成内部像素区域和边缘像素区域两部分,并对内部像素灰度进行均值化,从而有效抑制内部像素噪声。同时,利用误差理论对改进算法的不确定性进行分析。最后,通过仿真实验验证了改进算法的正确性,并表明改进算法有更好的噪声抑制性能。  相似文献   

20.
Palima D  Daria VR 《Applied optics》2007,46(20):4197-4201
We present what is to our knowledge a novel technique for efficient suppression of the zero-order beam inherent in light patterns projected via phase-only computer-generated holograms (CGHs). Encoding a CGH on a spatial light modulator (SLM) with a limited fill factor produces a disturbing zero-order beam at the optical axis. Here, we propose to derive a CGH, which includes holographic information to project a corrective beam that destructively interferes with the zero-order beam. The CGH for projecting arbitrary light patterns plus a corrective beam are derived using the Gerchberg-Saxton algorithm where the iterations impose both amplitude and phase constraints for the target field pattern at the Fourier plane. As proof of principle, we analyze the viability of the technique by simulating the performance when applied on a practical SLM with a limited fill factor, fixed number of phase-shifting pixels, and wavefront distortion associated with the surface roughness of the SLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号