首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gaseous and particulate matter measurements were performed from January 1999 to December 2001 to assess seasonal and diurnal patterns of air pollutions in the Lanzhou Valley, China. The objectives are the determination of the temporal variability of total suspended particulate (TSP) matter and PM10 levels, and their relationship with the SO2 and NOx emissions and desert dust intrusions from the dust sources in the Hexi Corridor in Gansu Province. The results showed that concentrations of gaseous and particulate pollutants undergo seasonal variations characterized by a winter maximum levels for SO2 (0.094-0.208 mg/m3) and NO2 (0.068-0.089 mg/m3) and a spring maximum levels for TSP (0.885-1.037 mg/m3). Linear regression analysis indicated that the diurnal mean TSP/PM10 ratio may approximate to 3.0, and that the annual NO2/NOx ratio was approximately 0.86, with its highest monthly average of 0.91 in June and its lowest monthly average of 0.788 in January. The origin of PM10 episodes was investigated by correlating the PM10 episodes in the Lanzhou Valley with the high wind speeds in Jinchang (dust sources) in the Hexi Corridor, and also, by comparing the PM10 levels with the SO2 and NOx concentrations. Most of the 'high PM10 episodes' (1-h mean maximum >1.0 mg/m3) were attributed to the desert dust intrusions from the Hexi Corridor. The influence of the industrial and domestic emissions in the PM10 levels was evidenced during most of the periods with the PM10 levels less than 1.0 mg/m3.  相似文献   

2.
The road transport sector is the largest consumer of commercial fuel energy within the transportation system in India and accounts for nearly 35% of the total liquid commercial fuel consumption by all sectors. Gasoline and diesel consumption for road transportation have quadrupled between 1980 and 2000 due to about nine times increase in the number of vehicles and four-fold increase in freight and passenger travel demands. The paper elaborates the trends of energy consumption and consequent emissions of greenhouse gases such as CO(2), CH(4) and N(2)O and ozone precursor gases like CO, NO(x) and NMVOC in the road transport sector in India for the period from 1980 to 2000. For the first time, efforts have been made to apportion the fuels, both diesel and gasoline, across different categories of vehicles operating on the Indian roads. In order to generate more comprehensive and complete emission estimates, additionally, other minor fuel types like light diesel oil and fuel oil along with lubricants have also been taken into account. Emission estimates have revealed that nearly 27 Mt of CO(2) were emitted in 1980, increasing to about 105 Mt in 2000. Similar trends have also been observed for other gases. Further scope for improvements in emission estimation is possible by generating country specific emission factors for different vehicle categories and improvement in documentation of fuel consumption at segregated levels by fuel types and vehicle types.  相似文献   

3.
The study presents an estimation of the energy input and the amount of emissions to air due to fuel, chainsaw and hydraulic oil consumption by heavy duty diesel engine vehicles operating in forest logging operations in Sweden. Exhaust concentrations are given for carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons and particulate matter. Three fuel types (rapeseed methyl ester, environmental class 1 and environmental class 3 diesel fuels) and two types of lubricating base oil (mineral- and vegetable-based) were examined. Energy input per unit of timber production (m3ub) was 82 MJ, 11% of which was due to energy consumption during the production phase of the fuel. Emissions during the whole life cycle of the fuels and the base oils are included in the study. The highest CO2 and NOx emissions occurred when rapeseed methyl ester was used as fuel together with rapeseed as base oil for chainsaw and hydraulic oil. The highest HC and CO emissions occurred when environmental class 3 diesel fuel was used.  相似文献   

4.
Carbon monoxide (CO), nitrogen oxide (NO(x)), hydrocarbon (HC), sulfur oxide (SO(2)), particulate matter <10 microm (PM(10)), and 57 VOC species of emissions were confirmed in a freeway tunnel in southern Taiwan. Emission factors were 1.89 (CO), 0.73 (NO(x)), 0.46 (HC), 0.02 (SO2) and 0.06 (PM(10)) g/km-vehicle for all vehicle fleets. Heavy-duty truck and trailer vehicles contributed 20% of the emissions on workdays and 9.5% on weekends in this study. Paraffins and aromatics were the main VOC groups in the tunnel. Isopentane, toluene, n-pentane, isoprene, 2,3-dimethylbutane, acetone, 2-methylpentane, 1-hexene, 1,2,4-trimethybenzene, 1-butene and propene emissions were the major VOC species. Their emission factors were over 10 mg/km-vehicle. Rainfall and high humidity in the tunnel could have reduced the VOC concentrations and increased the portion of aromatics. In addition to paraffins, olefins, and aromatic compounds, oxygenated compounds (i.e., acetone) were found. The pollutant ratios between the inside center and the outside of the tunnel were about 2-3 for CO, SO2, and PM(10) and 42 for NO(x). In addition, the emission factors of the vehicles could reflect real-world vehicle emissions on the highway and be used as baseline information for development of a vehicle control strategy.  相似文献   

5.
In the methodological context of the interpretation of environmental life cycle assessment (LCA) results, a normalisation study was performed. 15 impact categories were accounted for, including climate change, acidification, eutrophication, human toxicity, ecotoxicity, depletion of fossil energy resources, and land use. The year 2000 was chosen as a reference year, and information was gathered on two spatial levels: the global and the European level. From the 860 environmental interventions collected, 48 interventions turned out to account for at least 75% of the impact scores of all impact categories. All non-toxicity related, emission dependent impacts are fully dominated by the bulk emissions of only 10 substances or substance groups: CO(2), CH(4), SO(2), NO(x), NH(3), PM(10), NMVOC, and (H)CFCs emissions to air and emissions of N- and P-compounds to fresh water. For the toxicity-related emissions (pesticides, organics, metal compounds and some specific inorganics), the availability of information was still very limited, leading to large uncertainty in the corresponding normalisation factors. Apart from their usefulness as a reference for LCA studies, the results of this study stress the importance of efficient measures to combat bulk emissions and to promote the registration of potentially toxic emissions on a more comprehensive scale.  相似文献   

6.
从统计数据看瓷绝缘子制造企业的节能业绩   总被引:1,自引:1,他引:0  
为了了解瓷绝缘子行业近几年能耗的发展趋势,根据统计学原理,对瓷绝缘子制造企业的有关能耗数据进行随机抽样。以9个企业的平均数据为依据,得出:年产量和年产值每年分别平均增长6.6%和12%;每吨合格瓷燃料消耗、年耗燃料量和万元产值综合能耗每年分别平均下降6.9%、4.4%和7.8%;每吨合格瓷耗电量和年用电量每年分别平均增长9.5%和3.6%。统计数据表明,通过合理利用、科学管理、产品结构调整等途径,可以降低燃料消耗。  相似文献   

7.
Traffic emission scenarios in Lombardy region in 1998-2015   总被引:1,自引:0,他引:1  
This study assesses and discusses the current and future contribution of road traffic to primary PM10 and PM10 main precursors (i.e. NO(x), SO(2), NH(3), VOC) in the Lombardy region (Italy). It defines a coherent and updated set of input parameters (emission factors, mileage and fleet composition) for traffic emission estimation between 1998 and 2015. 1998-2004 emissions are assessed basing on historical data, while 2005-2015 rely on different hypothesis about mobility development and vehicular turnover rate. The work shows that road traffic emissions of PM10 and PM10 precursors are expected to decrease in the period 2005-2015, with a reduction greater than 70% in scenarios with a fast vehicle turnover and a decrease in fuel usage. Increase in fuel consumption could substantially lower the emission reduction expected, off-setting a substantial part of the new technology benefits. The introduction of DPF (diesel particulate filter) vehicles will determine a reduction of PM10 exhaust, however this could potentially be stalled by the increase in diesel usage in the vehicle fleet and an increase in mileage driven, as the latter causes a rise in the contribution of PM10 from abrasion. Concerning the total atmospheric emissions in Lombardy, SO(2) (-6%) and NH(3) (<-2%) emission will remain constant, while PM10, VOC and NO(x) emission will decrease, respectively by 2-30%, 6-15% and 2-32% in the period 2001-2015.  相似文献   

8.
结合亦庄水厂项目工程特点和对现有光伏系统的分析对比,最终选择了并网型发电形式和薄膜型光伏组件。详细阐述了光伏发电系统的逆变器和并网点的电气设计,介绍了光伏发电系统中光伏阵列的防腐、结构设计和电气设备的选型、监测的安全保障措施。该系统2018年实际发电量为80. 31×10~4kW·h,综合光伏发电系统衰减速率和实际运行经验等因素进行了能效分析预测,本次光伏发电系统年均发电量约为58. 75×10~4kW·h,年均CO_2减排量约为478. 22 t,年均SO_2减排量约为6. 53 t,年均NO_x减排量约为6. 81 t。证明了光伏发电系统在大型水厂的应用具有较好的发展前景。  相似文献   

9.
Intake fractions, an emissions-intake relationship for primary pollutants, are defined and are estimated in order to make simple estimates of health damages from air pollution. The sulfur dioxide (SO2) and total suspended particles (TSP) intake fractions for five cities of China are estimated for the four main polluting industries-electric power generation, mineral (mostly cement) products industry, chemical process industry and metallurgical industry (mainly iron and steel smelting). The Industrial Source Complex Long Term (ISTLT3) model is used to simulate the spatial distribution of incremental ambient concentrations due to emissions from a large sample of site-specific sources. Detailed population distribution information is used for each city. The average intake fractions within 50 km of these sources are 4.4x10(-6) for TSP, and 4.2x10(-6) for SO2, with standard deviations of 8.15x10(-6) and 9.16x10(-6), respectively. They vary over a wide range, from 10(-7) to 10(-5). Although the electric power generation has been the focus of much of the air pollution research in China, our results show that it has the lowest average intake fraction for a local range among the four industries, which highlights the importance of pollutant emissions from other industrial sources. Sensitivity analyses show how the intake fractions are affected by the source and pollutant characteristics, the most important parameter being the size of the domain. However, the intake fraction estimates are robust enough to be useful for evaluating the local impacts on human health of primary SO2 and TSP emissions. An application of intake fractions is given to demonstrate how this approach provides a rapid population risk estimate if the dose-response function is linear without threshold, and hence can help in prioritizing pollution control efforts.  相似文献   

10.
This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.  相似文献   

11.
Chemical profiles for particle emissions are needed for source apportionment studies using the chemical mass balance (CMB) receptor model. Source measurements of geological sources, motor vehicle exhaust, vegetative burning (e.g. asparagus, field burning, charbroil cooking), and industrial sources (e.g. oil-fueled glass plant, manure-fueled power plants) were acquired as part of the Imperial/Mexicali Valley Cross Border PM10 Transport Study in 1992. Six different source sampling techniques (i.e. hot- and diluted-exhaust sampling, ground-based source sampling, particle sweeping/grab sampling, vacuum sampling, and laboratory resuspension sampling) were applied to acquire filter samples of PM 2.5 and PM10 (particulate matter with aerodynamic diameters < 2.5 and 10 microm, respectively). Filter samples were analyzed for mass by gravimetry, elements (Na to U) by X-ray fluorescence, anions (Cl(-), NO3(-), SO4(=)) by ion chromatography, ammonium (NH4(+)) by automated colorimetry, soluble sodium (Na+) and potassium (K+) by atomic absorption spectrophotometry, and organic and elemental carbon (OC, EC) by thermal/optical reflectance. Concentration data were acquired for a total of approximately 50 chemical species. Elevated abundances of crustal components (Al, Si, K, Ca, Fe) from geological material, carbon (OC, EC) and trace elements (Br, Pb) from vehicle exhausts, carbon (OC, EC) and ions (K(+), Cl(-)) from vegetative burning, ions (SO4(=), NH4(+), Na(+), K(+), Cl(-)) and elements (Cl, Se) from a manure-fueled power plants, and sulfur and trace elements (Na(+), Pb, Se, Ni, V) from an oil-fueled glass plant were found in the resulting source profiles. Abundances of crustal species (e.g. Al, Si, Ca) in the Imperial/Mexicali Valley geological profiles are more than twice those found in central and southern California. Abundances of lead in motor vehicle exhausts indicate different vehicle fleets in border cities. Emission profiles from field burning and charbroil cooking specific to the border area show that a majority (>60%) of emissions are comprised of carbon, with high organic to total carbon ratios (0.93 to 0.97). Abundances of sulfate and ammonium account for nearly 60% of the manure-fueled power plant's emissions. Elevated levels of metals (Na(+), Pb, Cd, Se) and byproducts of petroleum combustion (S, Ni, V) were found in the oil-fueled glass plant's emissions.  相似文献   

12.
This paper reports on a 2-year emissions monitoring program launched by the Centre for Environmental Monitoring of the Vietnam Environment Administration which aimed at determining emission factors and emission inventories for two typical types of vehicle in Hanoi, Vietnam. The program involves four major activities. A database for motorcycles and light duty vehicles (LDV) in Hanoi was first compiled through a questionnaire survey. Then, two typical driving cycles were developed for the first time for motorcycles and LDVs in Hanoi. Based on this database and the developed driving cycles for Hanoi, a sample of 12 representative test vehicles were selected to determine vehicle specific fuel consumption and emission factors (CO, HC, NOx and CO2). This set of emission factors were developed for the first time in Hanoi with due considerations of local driving characteristics. In particular, it was found that the emission factors derived from Economic Commission for Europe (ECE) driving cycles and adopted in some previous studies were generally overestimated. Eventually, emission inventories for motorcycles and LDVs were derived by combining the vehicle population data, the developed vehicle specific emission factors and vehicle kilometre travelled (VKT) information from the survey. The inventory suggested that motorcycles contributed most to CO, HC and NOx emissions while LDVs appeared to be more fuel consuming.  相似文献   

13.
《Energy and Buildings》2006,38(11):1335-1342
A survey, in the form of a questionnaire, of energy consumption patterns in residential households in the rural fringe of Xian city was undertaken during the winter of 2003/2004. More than 200 households were sampled during the survey. The status of fuel consumption, including the use of biomass fuels for cooking and space heating, was investigated. The types of stoves, purpose of the stove use, and characteristics of the residential houses and residents were also reported and analyzed.The purpose of the survey was to clarify the status of energy consumption and to estimate emissions of greenhouse gases and air pollutants in rural areas of China, from the environmental perspective of climate change and indoor to continental scale air pollution. In rural areas of China, biomass (wood and agricultural waste, such as stalks, corn canes and twigs, branches of wood) is the type of fuel most commonly used. It emits several air pollutants: particulate matter (PM), CO, NMHCs, CH4 and high levels of black carbon (BC) – a greenhouse effect aerosol, and organic carbon (OC) – a cooling effect aerosol. However, CO2 emissions from biomass burning are assumed to be zero because of carbon neutrality.From this survey it would then be possible to analyze the fundamentals of emission reduction potential, for air pollutants and greenhouse gases, from the rural household sector in China.  相似文献   

14.
Estimating shipping emissions in the region of the Sea of Marmara, Turkey   总被引:1,自引:0,他引:1  
Ship emissions are significantly increasing globally and have remarkable impact on air quality on sea and land. These emissions contribute serious adverse health and environmental effects. Territorial waters, inland seas and ports are the regions most affected by ship emissions. As an inland sea the Sea of Marmara is an area that has too much ship traffic. Since the region of the Marmara is highly urbanized, emissions from ships affect human health and the overall environment. In this paper exhaust gas emissions from ships in the Sea of Marmara and the Turkish Straits are calculated by utilizing the data acquired in 2003. Main engine types, fuel types, operations types, navigation times and speeds of vessels are taken into consideration in the study. Total emissions from ships in the study area were estimated as 5,451,224 t y(-1) for CO(2), 111,039 t y(-1) for NO(x), 87,168 t y(-1) for SO(2), 20,281 t y(-1) for CO, 5801 t y(-1) for VOC, 4762 t y(-1) for PM. The shipping emissions in the region are equivalent to 11% of NO(x) 0.1% of CO and 0.12% of PM of the corresponding total emissions in Turkey. The shipping emissions in the area are 46% of NO(x), 25% of PM and 1.5% of CO of road traffic emissions in Turkey data between which and correspond to a higher level than aircraft emissions and rail emissions in Turkey.  相似文献   

15.
The objective of this investigation was to find the effect of ethanol–gasoline blends as fuel on the performance and exhaust emission of a spark ignition (SI) engine. A four-stroke three-cylinder SI engine was used for this study. Performance tests were conducted for the three blends E5 (5% ethanol), E10 (10% ethanol) and E15 (15% of ethanol) as well as E0(100% gasoline) to evaluate their brake thermal efficiency, specific fuel consumption and mechanical efficiency, while exhaust emissions were also analysed for carbon monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2) and oxides of nitrogen (NOx) with varying torque conditions and constant speed of the engine. The results showed that blends of gasoline and ethanol increased the brake power, brake thermal efficiency and the fuel consumption. The CO and HC emissions concentration in the engine exhaust decreased while the NOx concentration increased.  相似文献   

16.
The effect of ethanol-gasoline blends on criteria air pollutant emissions was investigated in a four-stroke motorcycle. The ethanol was blended with unleaded gasoline in four percentages (3, 10, 15, and 20% v/v) and controlled at a constant research octane number, RON (95), to accurately represent commercial gasoline. CO, THC, and NOx emissions were evaluated using the Economic Commission for Europe cycle on the chassis dynamometers. The results of the ethanol-gasoline blends were compared to those of commercial unleaded gasoline with methyl tert-butyl ether as the oxygenated additive. In general, the exhaust CO and NOx emissions decreased with increasing oxygen content in fuels. In contrast, ethanol added in the gasoline did not reduce the THC emissions for a constant RON gasoline. The 15% ethanol blend had the highest emission reductions relative to the reference fuel. The high ethanol-gasoline blend ratio (20%) resulted in a less emission reduction than those of low ratio blends (< 15%). This may be attributed to the changes in the combustion conditions in the carburetor engine with 20% ethanol addition. Furthermore, the influence of ethanol-gasoline blends on the reduction of exhaust emissions was observed at different driving modes, especially at 15 km/h cruising speed for CO and THC and acceleration stages for NOx.  相似文献   

17.
18.
Atasoy E  Döğeroğlu T  Kara S 《Water research》2004,38(14-15):3265-3274
The emissions of 19 different non-methane volatile organic compounds (NMVOCs) from the sewage treatment plant of the province of Eski?ehir in Turkey were estimated. The estimations were based on the modified surface-renewal model suggested by EPA. The estimated total annual amounts of the pollutants emitted (from the plant's primary and secondary clarifier units and their weirs, as well as the aerated biological treatment unit) varied between a range of 0.00024 t (1,3-dichlorobenzene) and 0.1646 t (tetrachloroethylene). The corresponding flux data ranged from 9.98 x 10(-10)g cm(-2) h(-1) (1,3-dichlorobenzene) to 8450 x 10(-10)g cm(-2) h(-1) (tetrachloroethylene). Resulting total hourly NMVOC emission rate (0.041 kg h(-1)) was found not to exceed the current national standards. This work may be considered as a regional background for a possible contribution to the national and international emission inventory study on NMVOCs.  相似文献   

19.
This work reports sampling of motorcycle on-road driving cycles in actual urban and rural environments and the development of representative driving cycles using the principle of least total variance in individual regions. Based on the representative driving cycles in individual regions, emission factors for carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO(x)=NO+NO(2)) and carbon dioxide (CO(2)), as well as fuel consumption, were determined using a chassis dynamometer. The measurement results show that the representative driving cycles are almost identical in the three largest cities in Taiwan, but they differ significantly from the rural driving cycle. Irrespective of driving conditions, emission factors differ insignificantly between the urban and rural regions at a 95% confidence level. However, the fuel consumption in urban centers is approximately 30% higher than in the rural regions, with driving conditions in the former usually poor compared to the latter. Two-stroke motorcycles generally have considerably higher HC emissions and quite lower NO(x) emissions than those of four-stroke motorcycles. Comparisons with other studies suggest that factors such as road characteristics, traffic volume, vehicle type, driving conditions and driver behavior may affect motorcycle emission levels in real traffic situations.  相似文献   

20.
Within the framework of an air quality study of the French alpine valleys (POVA program), an atmospheric emission inventory concerning major pollutants: CO, NOx, SO(2), CH(4), particles (PT) and non-methane volatile organic compounds (NMVOC) was carried out. This inventory has a spatial resolution of 1 km(2) and was established for the reference year 2003. The coexistence of economic activities and the Vanoise national park makes the Maurienne valley a sensitive site, particularly representative of the problems of sustainable development in alpine areas, where air pollution is one of the most important aspects. The area, which covers 4588 km(2), is an alpine valley that is sensitive to air pollution due to the emission sources (traffic, industries, private heating, etc.), its morphology (a narrow valley surrounded by high ranges), and local meteorology (temperature inversions and slope winds). As expected, the result which includes both biogenic and anthropogenic sources shows serious emissions of pollutants that are mainly due to the presence of highways and industries around. Two emission inventories were drawn up: one with emission factors determined by CORINAIR (from the European Environment Agency) and the other with emission factors determined by BUWAL-OFEFP (from Swiss Agency for the Environment, Forests and Landscape). The inventories were then compared thanks to concentrations calculated from a numerical model. Computations were run for an intensive field observation period from 25 June to 2 July 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号