首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
The problem of providing surgical navigation using image overlays on the operative scene can be split into four main tasks--calibration of the optical system; registration of preoperative images to the patient; system and patient tracking, and display using a suitable visualization scheme. To achieve a convincing result in the magnified microscope view a very high alignment accuracy is required. We have simulated an entire image overlay system to establish the most significant sources of error and improved each of the stages involved. The microscope calibration process has been automated. We have introduced bone-implanted markers for registration and incorporated a locking acrylic dental stent (LADS) for patient tracking. The LADS can also provide a less-invasive registration device with mean target error of 0.7 mm in volunteer experiments. These improvements have significantly increased the alignment accuracy of our overlays. Phantom accuracy is 0.3-0.5 mm and clinical overlay errors were 0.5-1.0 mm on the bone fiducials and 0.5-4 mm on target structures. We have improved the graphical representation of the stereo overlays. The resulting system provides three-dimensional surgical navigation for microscope-assisted guided interventions (MAGI).  相似文献   

2.
Image overlay projection is a form of augmented reality that allows surgeons to view underlying anatomical structures directly on the patient surface. It improves intuitiveness of computer-aided surgery by removing the need for sight diversion between the patient and a display screen and has been reported to assist in 3-D understanding of anatomical structures and the identification of target and critical structures. Challenges in the development of image overlay technologies for surgery remain in the projection setup. Calibration, patient registration, view direction, and projection obstruction remain unsolved limitations to image overlay techniques. In this paper, we propose a novel, portable, and handheld-navigated image overlay device based on miniature laser projection technology that allows images of 3-D patient-specific models to be projected directly onto the organ surface intraoperatively without the need for intrusive hardware around the surgical site. The device can be integrated into a navigation system, thereby exploiting existing patient registration and model generation solutions. The position of the device is tracked by the navigation system's position sensor and used to project geometrically correct images from any position within the workspace of the navigation system. The projector was calibrated using modified camera calibration techniques and images for projection are rendered using a virtual camera defined by the projectors extrinsic parameters. Verification of the device's projection accuracy concluded a mean projection error of 1.3 mm. Visibility testing of the projection performed on pig liver tissue found the device suitable for the display of anatomical structures on the organ surface. The feasibility of use within the surgical workflow was assessed during open liver surgery. We show that the device could be quickly and unobtrusively deployed within the sterile environment.  相似文献   

3.
We describe a registration and tracking technique to integrate cardiac X-ray images and cardiac magnetic resonance (MR) images acquired from a combined X-ray and MR interventional suite (XMR). Optical tracking is used to determine the transformation matrices relating MR image coordinates and X-ray image coordinates. Calibration of X-ray projection geometry and tracking of the X-ray C-arm and table enable three-dimensional (3-D) reconstruction of vessel centerlines and catheters from bi-plane X-ray views. We can, therefore, combine single X-ray projection images with registered projection MR images from a volume acquisition, and we can also display 3-D reconstructions of catheters within a 3-D or multi-slice MR volume. Registration errors were assessed using phantom experiments. Errors in the combined projection images (two-dimensional target registration error--TRE) were found to be 2.4 to 4.2 mm, and the errors in the integrated volume representation (3-D TRE) were found to be 4.6 to 5.1 mm. These errors are clinically acceptable for alignment of images of the great vessels and the chambers of the heart. Results are shown for two patients. The first involves overlay of a catheter used for invasive pressure measurements on an MR volume that provides anatomical context. The second involves overlay of invasive electrode catheters (including a basket catheter) on a tagged MR volume in order to relate electrophysiology to myocardial motion in a patient with an arrhythmia. Visual assessment of these results suggests the errors were of a similar magnitude to those obtained in the phantom measurements.  相似文献   

4.
Fluoroscopic overlay images rendered from preoperative volumetric data can provide additional anatomical details to guide physicians during catheter ablation procedures for treatment of atrial fibrillation (AFib). As these overlay images are often compromised by cardiac and respiratory motion, motion compensation methods are needed to keep the overlay images in sync with the fluoroscopic images. So far, these approaches have either required simultaneous biplane imaging for 3-D motion compensation, or in case of monoplane X-ray imaging, provided only a limited 2-D functionality. To overcome the downsides of the previously suggested methods, we propose an approach that facilitates a full 3-D motion compensation even if only monoplane X-ray images are available. To this end, we use a training phase that employs a biplane sequence to establish a patient specific motion model. Afterwards, a constrained model-based 2-D/3-D registration method is used to track a circumferential mapping catheter. This device is commonly used for AFib catheter ablation procedures. Based on the experiments on real patient data, we found that our constrained monoplane 2-D/3-D registration outperformed the unconstrained counterpart and yielded an average 2-D tracking error of 0.6 mm and an average 3-D tracking error of 1.6 mm. The unconstrained 2-D/3-D registration technique yielded a similar 2-D performance, but the 3-D tracking error increased to 3.2 mm mostly due to wrongly estimated 3-D motion components in X-ray view direction. Compared to the conventional 2-D monoplane method, the proposed method provides a more seamless workflow by removing the need for catheter model re-initialization otherwise required when the C-arm view orientation changes. In addition, the proposed method can be straightforwardly combined with the previously introduced biplane motion compensation technique to obtain a good trade-off between accuracy and radiation dose reduction.  相似文献   

5.
X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3-D roadmaps derived from preprocedural volumetric data can be used to add anatomical information. However, the registration between the 3-D roadmap and the 2-D X-ray image can be compromised by patient respiratory motion. Three methods were designed and evaluated to correct for respiratory motion using features in the 2-D X-ray images. The first method is based on tracking either the diaphragm or the heart border using the image intensity in a region of interest. The second method detects the tracheal bifurcation using the generalized Hough transform and a 3-D model derived from 3-D preoperative volumetric data. The third method is based on tracking the coronary sinus (CS) catheter. This method uses blob detection to find all possible catheter electrodes in the X-ray image. A cost function is applied to select one CS catheter from all catheter-like objects. All three methods were applied to X-ray images from 18 patients undergoing radiofrequency ablation for the treatment of atrial fibrillation. The 2-D target registration errors (TRE) at the pulmonary veins were calculated to validate the methods. A TRE of 1.6 mm ± 0.8 mm was achieved for the diaphragm tracking; 1.7 mm ± 0.9 mm for heart border tracking, 1.9 mm ± 1.0 mm for trachea tracking, and 1.8 mm ± 0.9 mm for CS catheter tracking. We present a comprehensive comparison between the techniques in terms of robustness, as computed by tracking errors, and accuracy, as computed by TRE using two independent approaches.  相似文献   

6.
Accurate and fast localization of a predefined target region inside the patient is an important component of many image-guided therapy procedures. This problem is commonly solved by registration of intraoperative 2-D projection images to 3-D preoperative images. If the patient is not fixed during the intervention, the 2-D image acquisition is repeated several times during the procedure, and the registration problem can be cast instead as a 3-D tracking problem. To solve the 3-D problem, we propose in this paper to apply 2-D region tracking to first recover the components of the transformation that are in-plane to the projections. The 2-D motion estimates of all projections are backprojected into 3-D space, where they are then combined into a consistent estimate of the 3-D motion. We compare this method to intensity-based 2-D to 3-D registration and a combination of 2-D motion backprojection followed by a 2-D to 3-D registration stage. Using clinical data with a fiducial marker-based gold-standard transformation, we show that our method is capable of accurately tracking vertebral targets in 3-D from 2-D motion measured in X-ray projection images. Using a standard tracking algorithm (hyperplane tracking), tracking is achieved at video frame rates but fails relatively often (32% of all frames tracked with target registration error (TRE) better than 1.2 mm, 82% of all frames tracked with TRE better than 2.4 mm). With intensity-based 2-D to 2-D image registration using normalized mutual information (NMI) and pattern intensity (PI), accuracy and robustness are substantially improved. NMI tracked 82% of all frames in our data with TRE better than 1.2 mm and 96% of all frames with TRE better than 2.4 mm. This comes at the cost of a reduced frame rate, 1.7 s average processing time per frame and projection device. Results using PI were slightly more accurate, but required on average 5.4 s time per frame. These results are still substantially faster than 2-D to 3-D registration. We conclude that motion backprojection from 2-D motion tracking is an accurate and efficient method for tracking 3-D target motion, but tracking 2-D motion accurately and robustly remains a challenge.  相似文献   

7.
Intraoperative freehand three-dimensional (3-D) ultrasound (3D-US) has been proposed as a noninvasive method for registering bones to a preoperative computed tomography image or computer-generated bone model during computer-aided orthopedic surgery (CAOS). In this technique, an US probe is tracked by a 3-D position sensor and acts as a percutaneous device for localizing the bone surface. However, variations in the acoustic properties of soft tissue, such as the average speed of sound, can introduce significant errors in the bone depth estimated from US images, which limits registration accuracy. We describe a new self-calibrating approach to US-based bone registration that addresses this problem, and demonstrate its application within a standard registration scheme. Using realistic US image data acquired from 6 femurs and 3 pelves of intact human cadavers, and accurate Gold Standard registration transformations calculated using bone-implanted fiducial markers, we show that self-calibrating registration is significantly more accurate than a standard method, yielding an average root mean squared target registration error of 1.6 mm. We conclude that self-calibrating registration results in significant improvements in registration accuracy for CAOS applications over conventional approaches where calibration parameters of the 3D-US system remain fixed to values determined using a preoperative phantom-based calibration.  相似文献   

8.
Image registration is a challenging problem for computer vision, and accurate and effective image registration is still required in various computer vision applications, e.g., 3-D scanning, autonomous navigation, and augmented reality. However, image registration becomes difficult due to the presence of noise and photometric changes. This paper presents a novel image registration method with unsupervised inverse intensity compensation (ICIR). This methodology uses weighted vectors to compensate for areas affected by radiometric variations. This is a 5-D vector body composed of RGB, brightness, and gradient, that is, each pixel is represented by a 5-D vector in its neighborhood. When performing image registration, the vector angle metric robust to illumination effect is used to calculate cost volumes. Then the selected cost metrics are aggregated based on RGB-Gradient tree structure. Experiments performed on stereo images of the Middlebury datasets and ours demonstrate this methodology in calculation accuracy and time all have good performance.  相似文献   

9.
In image-guided therapy, high-quality preoperative images serve for planning and simulation, and intraoperatively as "background", onto which models of surgical instruments or radiation beams are projected. The link between a preoperative image and intraoperative physical space of the patient is established by image-to-patient registration. In this paper, we present a novel 3-D/2-D registration method. First, a 3-D image is reconstructed from a few 2-D X-ray images and next, the preoperative 3-D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure (SM). Because the quality of the reconstructed image is generally low, we introduce a novel SM, which is able to cope with low image quality as well as with different imaging modalities. The novel 3-D/2-D registration method has been evaluated and compared to the gradient-based method (GBM) using standardized evaluation methodology and publicly available 3-D computed tomography (CT), 3-D rotational X-ray (3DRX), and magnetic resonance (MR) and 2-D X-ray images of two spine phantoms, for which gold standard registrations were known. For each of the 3DRX, CT, or MR images and each set of X-ray images, 1600 registrations were performed from starting positions, defined as the mean target registration error (mTRE), randomly generated and uniformly distributed in the interval of 0-20 mm around the gold standard. The capture range was defined as the distance from gold standard for which the final TRE was less than 2 mm in at least 95% of all cases. In terms of success rate, as the function of initial misalignment and capture range the proposed method outperformed the GBM. TREs of the novel method and the GBM were approximately the same. For the registration of 3DRX and CT images to X-ray images as few as 2-3 X-ray views were sufficient to obtain approximately 0.4 mm TREs, 7-9 mm capture range, and 80%-90% of successful registrations. To obtain similar results for MR to X-ray registrations, an image, reconstructed from at least 11 X-ray images was required. Reconstructions from more than 11 images had no effect on the registration results.  相似文献   

10.
Three dimensional (3-D) imaging and display have been subjects of much research due to their diverse benefits and applications. However, due to the necessity to capture, record, process, and display an enormous amount of optical data for producing high-quality 3-D images, the developed 3-D imaging techniques were forced to compromise their performances (e.g., gave up the continuous parallax, restricting to a fixed viewing point) or to use special devices and technology (such as coherent illuminations, special spectacles) which is inconvenient for most practical implementation. Today's rapid progress of digital capture and display technology opened the possibility to proceed toward noncompromising, easy-to-use 3-D imaging techniques. This technology progress prompted the revival of the integral imaging (II)technique based on a technique proposed almost one century ago. II is a type of multiview 3-D imaging system that uses an array of diffractive or refractive elements to capture the 3-D optical data. It has attracted great attention recently, since it produces autostereoscopic images without special illumination requirements. However, with a conventional II system it is not possible to produce 3-D images that have both high resolution, large depth-of-field, and large viewing angle. This paper provides an overview of the approaches and techniques developed during the last decade to overcome these limitations. By combining these techniques with upcoming technology it is to be expected that II-based 3-D imaging systems will reach practical applicability in various fields.  相似文献   

11.
Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Registration of 3-D ultrasound (US) images of carotid plaque obtained at different time points is essential for sensitive monitoring of plaque changes in volume and surface morphology. This registration technique should be nonrigid, since different head positions during image acquisition sessions cause relative bending and torsion in the neck, producing nonlinear deformations between the images. We modeled the movement of the neck using a “twisting and bending” model with only six parameters for nonrigid registration. We evaluated the algorithm using 3-D US carotid images acquired at two different head positions to simulate images acquired at different times. We calculated the mean registration error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our “twisting and bending” model-based nonrigid registration algorithm. We achieved an average registration error of $0.80 pm 0.26$ mm using our nonrigid registration technique, which was a significant improvement in registration accuracy over rigid registration, even with reduced degrees-of-freedom compared to the other nonrigid registration algorithms.   相似文献   

12.
3-D/2-D registration of CT and MR to X-ray images   总被引:6,自引:0,他引:6  
A crucial part of image-guided therapy is registration of preoperative and intraoperative images, by which the precise position and orientation of the patient's anatomy is determined in three dimensions. This paper presents a novel approach to register three-dimensional (3-D) computed tomography (CT) or magnetic resonance (MR) images to one or more two-dimensional (2-D) X-ray images. The registration is based solely on the information present in 2-D and 3-D images. It does not require fiducial markers, intraoperative X-ray image segmentation, or timely construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3-D MR or CT data, and gradients of intraoperative X-ray images at locations defined by the X-ray source and 3-D surface points. The registration is concerned with finding the rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. We have thoroughly validated our registration method by using MR, CT, and X-ray images of a cadaveric lumbar spine phantom for which "gold standard" registration was established by means of fiducial markers, and its accuracy assessed by target registration error. Volumes of interest, containing single vertebrae L1-L5, were registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the "gold standard" position. CT/X-ray (MR/ X-ray) registration, which is fast, was successful in more than 91% (82% except for L1) of trials if started from the "gold standard" translated or rotated for less than 6 mm or 17 degrees (3 mm or 8.6 degrees), respectively. Root-mean-square target registration errors were below 0.5 mm for the CT to X-ray registration and below 1.4 mm for MR to X-ray registration.  相似文献   

13.
This paper presents a semiautomatic method for the registration of images acquired during surgery with a tracked laser range scanner (LRS). This method, which relies on the registration of vessels that can be visualized in the pre- and the post-resection images, is a component of a larger system designed to compute brain shift that occurs during tumor resection cases. Because very large differences between pre- and postresection images are typically observed, the development of fully automatic methods to register these images is difficult. The method presented herein is semiautomatic and requires only the identification of a number of points along the length of the vessels. Vessel segments joining these points are then automatically identified using an optimal path finding algorithm that relies on intensity features extracted from the images. Once vessels are identified, they are registered using a robust point-based nonrigid registration algorithm. The transformation computed with the vessels is then applied to the entire image. This permits establishment of a complete correspondence between the pre- and post-3-D LRS data. Experiments show that the method is robust to operator errors in localizing homologous points and a quantitative evaluation performed on ten surgical cases shows submillimetric registration accuracy.  相似文献   

14.
The existing differential approaches for localization of 3-D anatomic point landmarks in 3-D images are sensitive to noise and usually extract numerous spurious landmarks. The parametric model-based approaches are not practically usable for localization of landmarks that can not be modeled by simple parametric forms. Some dedicated methods using anatomic knowledge to identify particular landmarks are not general enough to cope with other landmarks. In this paper, we propose a model-based, semi-global segmentation approach to automatically localize 3-D point landmarks in neuroimages. To localize a landmark, the semi-global segmentation (meaning the segmentation of a part of the studied structure in a certain neighborhood of the landmark) is first achieved by an active surface model, and then the landmark is localized by analyzing the segmented part only. The joint use of global model-to-image registration, semi-global structure registration, active surface-based segmentation, and point-anchored surface registration makes our method robust to noise and shape variation. To evaluate the method, we apply it to the localization of ventricular landmarks including curvature extrema, centerline intersections, and terminal points. Experiments with 48 clinical and 18 simulated magnetic resonance (MR) volumetric images show that the proposed approach is able to localize these landmarks with an average accuracy of 1 mm (i.e., at the level of image resolution). We also illustrate the use of the proposed approach to cortical landmark identification and discuss its potential applications ranging from computer-aided radiology and surgery to atlas registration with scans.   相似文献   

15.
Surgeries of the skull base require accuracy to safely navigate the critical anatomy. This is particularly the case for endoscopic endonasal skull base surgery (ESBS) where the surgeons work within millimeters of neurovascular structures at the skull base. Today's navigation systems provide approximately 2 mm accuracy. Accuracy is limited by the indirect relationship of the navigation system, the image and the patient. We propose a method to directly track the position of the endoscope using video data acquired from the endoscope camera. Our method first tracks image feature points in the video and reconstructs the image feature points to produce 3D points, and then registers the reconstructed point cloud to a surface segmented from preoperative computed tomography (CT) data. After the initial registration, the system tracks image features and maintains the 2D-3D correspondence of image features and 3D locations. These data are then used to update the current camera pose. We present a method for validation of our system, which achieves submillimeter (0.70 mm mean) target registration error (TRE) results.  相似文献   

16.
The accuracy of image-guided neurosurgery generally suffers from brain deformations due to intraoperative changes. These deformations cause significant changes of the anatomical geometry (organ shape and spatial interorgan relations), thus making intraoperative navigation based on preoperative images error prone. In order to improve the navigation accuracy, we developed a biomechanical model of the human head based on the finite element method, which can be employed for the correction of preoperative images to cope with the deformations occurring during surgical interventions. At the current stage of development, the two-dimensional (2-D) implementation of the model comprises two different materials, though the theory holds for the three-dimensional (3-D) case and is capable of dealing with an arbitrary number of different materials. For the correction of a preoperative image, a set of homologous landmarks must be specified which determine correspondences. These correspondences can be easily integrated into the model and are maintained throughout the computation of the deformation of the preoperative image. The necessary material parameter values have been determined through a comprehensive literature study. Our approach has been tested for the case of synthetic images and yields physically plausible deformation results. Additionally, we carried out registration experiments with a preoperative MR image of the human head and a corresponding postoperative image simulating an intraoperative image. We found that our approach yields good prediction results, even in the case when correspondences are given in a relatively small area of the image only.  相似文献   

17.
In this study, we registered live-time interventional magnetic resonance imaging (iMRI) slices with a previously obtained high-resolution MRI volume that in turn can be registered with a variety of functional images, e.g., PET, SPECT, for tumor targeting. We created and evaluated a slice-to-volume (SV) registration algorithm with special features for its potential use in iMRI-guided radio-frequency (RF) thermal ablation of prostate cancer. The algorithm features included a multiresolution approach, two similarity measures, and automatic restarting to avoid local minima. Imaging experiments were performed on volunteers using a conventional 1.5-T MR scanner and a clinical 0.2-T C-arm iMRI system under realistic conditions. Both high-resolution MR volumes and actual iMRI image slices were acquired from the same volunteers. Actual and simulated iMRI images were used to test the dependence of SV registration on image noise, receive coil inhomogeneity, and RF needle artifacts. To quantitatively assess registration, we calculated the mean voxel displacement over a volume of interest between SV registration and volume-to-volume registration, which was previously shown to be quite accurate. More than 800 registration experiments were performed. For transverse image slices covering the prostate, the SV registration algorithm was 100% successful with an error of <2 mm, and the average and standard deviation was only 0.4 mm +/- 0.2 mm. Visualizations such as combined sector display and contour overlay showed excellent registration of the prostate and other organs throughout the pelvis. Error was greater when an image slice was obtained at other orientations and positions, mostly because of inconsistent image content such as that from variable rectal and bladder filling. These preliminary experiments indicate that MR SV registration is sufficiently accurate to aid image-guided therapy.  相似文献   

18.
This paper presents a multiple-object 2-D-3-D registration technique for noninvasively identifying the poses of fracture fragments in the space of a preoperative treatment plan. The plan is made by manipulating and aligning computer models of individual fracture fragments that are segmented from a diagnostic computed tomography. The registration technique iteratively updates the treatment plan and matches its digitally reconstructed radiographs to a small number of intraoperative fluoroscopic images. The proposed approach combines an image similarity metric that integrates edge information with mutual information, and a global-local optimization scheme, to deal with challenges associated with the registration of multiple small fragments and limited imaging orientations in the operating room. The method is easy to use as minimum user interaction is required. Experiments on simulated fractures and two distal radius fracture phantoms demonstrate clinically acceptable target registration errors with capture range as large as 10 mm.  相似文献   

19.
Surgical navigation systems are used widely among all fields of modern medicine, including, but not limited to ENT- and maxillofacial surgery. As a fundamental prerequisite for image-guided surgery, intraoperative registration, which maps image to patient coordinates, has been subject to many studies and developments. While registration methods have evolved from invasive procedures like fixed stereotactic frames and implanted fiducial markers toward surface-based registration and noninvasive markers fixed to the patient's skin, even the most sophisticated registration techniques produce an imperfect result. Due to errors introduced during the registration process, the projection of navigated instruments into image data deviates up to several millimeter from the actual position, depending on the applied registration method and the distance between the instrument and the fiducial markers. We propose a method that allows to automatically and continually improve registration accuracy during intraoperative navigation after the actual registration process has been completed. The projections of navigated instruments into image data are inspected and validated by the navigation software. Errors in image-to-patient registration are identified by calculating intersections between the virtual instruments' axes and surfaces of hard bone tissue extracted from the patient's image data. The information gained from the identification of such registration errors is then used to improve registration accuracy by adding an additional pair of registration points at every location where an error has been detected. The proposed method was integrated into a surgical navigation system based on paired points registration with anatomical landmarks. Experiments were conducted, where registrations with deliberately misplaced point pairs were corrected with automatic error correction. Results showed an improvement in registration quality in all cases.  相似文献   

20.
Displaying anatomical and physiological information derived from preoperative medical images in the operating room is critical in image-guided neurosurgery. This paper presents a new approach referred to as augmented virtuality (AV) for displaying intraoperative views of the operative field over three-dimensional (3-D) multimodal preoperative images onto an external screen during surgery. A calibrated stereovision system was set up between the surgical microscope and the binocular tubes. Three-dimensional surface meshes of the operative field were then generated using stereopsis. These reconstructed 3-D surface meshes were directly displayed without any additional geometrical transform over preoperative images of the patient in the physical space. Performance evaluation was achieved using a physical skull phantom. Accuracy of the reconstruction method itself was shown to be within 1 mm (median: 0.76 mm +/- 0.27), whereas accuracy of the overall approach was shown to be within 3 mm (median: 2.29 mm +/- 0.59), including the image-to-physical space registration error. We report the results of six surgical cases where AV was used in conjunction with augmented reality. AV not only enabled vision beyond the cortical surface but also gave an overview of the surgical area. This approach facilitated understanding of the spatial relationship between the operative field and the preoperative multimodal 3-D images of the patient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号