首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isometric twitch and tetanic contractions of three hindlimb muscles (soleus, plantaris, extensor digitorum longus) were recorded in situ in groups of mdx and C57BL/10 control mice at young, adult and old ages (3, 4, 6, 8, 13, 26, 39 and 52 weeks). Based on a two-way analysis of variance (age/phenotype) the mdx phenotype did not modify the absolute tension but was associated with a significant decrease in the tetanic tension normalized to muscle weight in all the muscles which became heavier. These results suggest that the contractile material in mdx is not so powerful as in controls. Moreover, significantly faster time to peak and half-relaxation time were observed in mdx soleus and plantaris. Comparison between these contraction characteristics and those of other experimental models suggests that the high percentage of regenerated fibres in mdx muscles could play a role in modifying contractile properties.  相似文献   

2.
Excitation-contraction uncoupling has been identified as a mechanism underlying skeletal muscle weakness in aging mammals (sarcopenia). The basic mechanism for excitation-contraction uncoupling is a larger number of ryanodine receptors (RyR1) uncoupled to dihydropyridine receptors (DHPRs) (Delbono, O., O'Rourke, K. S., and Ettinger, W. H. (1995) J. Membr. Biol. 148, 211-222). In the present study, we used transgenic mice overexpressing human insulin-like growth factor-1 exclusively in skeletal muscle to test the hypothesis that a high concentration of IGF-1 prevents age-related decreases in DHPR number and in muscle force. Transgenic mice express 10-20-fold higher IGF-1 concentrations than nontransgenic mice at all ages (1-24 months). The number of DHPRs is 50-100% higher, and the DHPR/RyR1 ratio is 40% higher in transgenic soleus (predominantly type I fiber muscles), extensor digitorum longus (predominantly type II fiber muscles), and the pool of type I and type II fiber muscles than in nontransgenic young (6 months), adult (12 months), and old (24 months) mice. Furthermore, no age-related changes in DHPRs and the DHPR/RyR1 ratio were observed in transgenic muscles. The specific single twitch and tetanic muscle force in old transgenic soleus and extensor digitorum longus muscles are 50% higher than in old nontransgenic muscles. Taken together, these results support the concept that IGF-1- dependent prevention of age-related decline in DHPR expression is associated with stronger muscle contraction in older transgenic mice.  相似文献   

3.
We have studied the in vitro contractile and fatigue characteristics of extensor digitorum longus (EDL) muscles from 8- and 62-week-old dystrophin-deficient (mdx) and control mice at 20 degrees C and 35 degrees C. There were no differences in fatigability at 20 degrees C, but at 35 degrees C the dystrophin-deficient muscles demonstrated increased fatigability compared to controls, with the older mice exhibiting the greatest fatigue. These results suggest a temperature-related mechanism of myofibrillar fatigue in dystrophin-deficient EDL muscles.  相似文献   

4.
Loss of motoneurons results in a decrease in force production by skeletal muscles and paralysis. Although it has been shown that missing motoneurons of rats can be replaced by embryonic homotopic neurons, attempts to guide their axons to their target muscles that have lost their innervation have been unsuccessful. In this study attempts were made to guide axons from grafted embryonic motoneurons to their target via a reimplanted ventral root. Adult hosts that received an embryonic graft prelabelled with 5-bromo-2'-deoxyuridine had their L4 ventral root avulsed and reimplanted into the spinal cord. Three to six months later, neurons that had their axons in the L4 ventral ramus were retrogradely labelled with fast blue and diamidino yellow. In five animals that had received an embryonic graft 116 +/- 16 cells were retrogradely labelled, and of these at least 15% were of graft origin, since they were positive for 5-bromo-2'-deoxyuridine. In five animals that had their L4 ventral root reimplanted but did not receive a graft, only 12 +/- 1.3 cells were retrogradely labelled. However, meaningful functional recovery could be achieved only if the regenerating axons of embryonic motoneurons found in the L4 ventral ramus were able to reverse the loss of force of muscles that had lost their innervation. This study shows that axons of embryonic motoneurons grafted into an adult rat spinal cord, as well as some axons of host origin, can be guided to denervated hindlimb muscles via reimplanted lumbar ventral roots. In normal rats approximately 30 motor axons innervated the extensor digitorum longus and 60 innervated the tibialis anterior via the L4 ventral root. In rats that did not receive a graft only 3.7 +/- 1.2 axons reached the extensor digitorum longus and 3.5 +/- 0.4 reached the tibialis anterior muscle via the implanted L4 ventral root. In animals that had an embryonic graft, 7.6 +/- 0.5 axons innervated the extensor digitorum longus and 8.5 +/- 0.5 reached the tibialis anterior muscle via the implanted root. In rats without a transplant the maximum tetanic tension elicited by stimulating the implanted L4 root was 16 +/- 7 g for the extensor digitorum longus and 53 +/- 36 g for the tibialis anterior muscle, whereas the corresponding muscles in animals that had an embryonic graft developed 82 +/- 16 and 281 +/- 95 g respectively. Thus it appears that the grafted motoneurons contributed to the innervation and functional recovery of the denervated muscles.  相似文献   

5.
Female rats (7-8 mo old, n = 40) were randomly placed into the intact control (Int) and ovariectomized control (Ovx) groups. Two weeks after ovariectomy, animals were further divided into intact 2-wk hindlimb unloaded (Int-HU) and ovariectomized hindlimb unloaded (Ovx-HU). We hypothesized that there would be greater hindlimb unloading-related atrophy in Ovx than in Int rats. In situ contractile tests were performed on soleus (Sol), plantaris (Plan), peroneus longus (Per), and extensor digitorum longus (EDL) muscles. Body weight and Sol mass were approximately 22% larger in Ovx than in Int group and approximately 18% smaller in both HU groups than in Int rats (Ovx x HU interaction, P < 0.05), and there was a similar trend in Plan muscle (P < 0.07). There were main effects (P < 0.05) for both ovariectomy (growth) and hindlimb unloading (atrophy) on gastrocnemius mass. Mass of the Per and EDL muscles was unaffected by either ovariectomy or hindlimb unloading. Time to peak twitch tension for EDL and one-half relaxation times for Sol, Plan, Per, and EDL muscles were faster (P < 0.05) in Ovx than in Int animals. The results suggest that 1) ovariectomy led to similar increases of approximately 20% in body weight and plantar flexor mass; 2) hindlimb unloading may have prevented ovariectomy-related muscle growth; 3) greater atrophy may have occurred in Sol and Plan of Ovx animals compared with controls; and 4) removal of ovarian hormonal influence decreased skeletal muscle contraction times.  相似文献   

6.
The uptake of glucose by isolated extensor digitorum longus muscles was measured in rats of 78-350 g bodyweight. The rate of uptake per unit weight of muscle fell as the weight of the animal increased. It is concluded that in metabolic studies with isolated rat skelatal muscles, only muscles from weight-matched rats should be compared.  相似文献   

7.
The cytophotometric-morphometrical analysis of extensor digitorum longus and soleus muscles of 2.5 and 18 months old rats revealed regional and age-dependent differences in fibre type distribution, fibre area and fibre type related-enzyme activities which characterize contractility and metabolic profile. Variations along the longitudinal axis from the origin to the insertion and along three transversal axes from superficial to deep were found dependent on the muscle investigated. For example, the fibres of extensor digitorum longus muscle showed increased contractile and glycolytic capacities near insertion and the fibres of soleus muscle increased oxidative capacity in its middle part. Furthermore, the contribution of the fibre type that is dominant in a muscle (fast-glycolytic fibre type in extensor digitorum longus and slow-oxidative fibre type in soleus muscle) to the total number of fibres increased from origin to insertion by 15 and 30%, respectively. Along the superficial-deep axes the oxidative capacity of all fibres increased, the most in fast fibres of the soleus muscle by approximately 50%. In soleus muscle, a decrease of cross areas of all fibre types from superficial to deep was found, correlating negatively with the succinate dehydrogenase activity of the fibres. In extensor digitorum longus muscle the change in cross areas of slow-oxidative and fast-oxidative glycolytic fibres was dependent on the position of the transversal axis in the muscle. The results suggest that distribution patterns of fibre types and the metabolic make up of individual muscle fibres are adapted on the basis of local functional demands. In both muscles, higher numbers and increased oxidative capacity of fast-glycolytic fibres were found during ageing, but variations from superficial to deeper regions were irrespective of age.  相似文献   

8.
We analyzed the activity of acetylcholinesterase (AChE) and its molecular forms in the tissues of normal and dystrophic (mdx) mice, at different developmental stages. We studied the brain, the heart and the serum, in addition to four predominantly fast-twitch muscles (tibialis, plantaris, gastrocnemius and extensor digitorum longus (EDL)) and the slow-twitch, soleus muscle. We found no difference between mdx and control mice in the AChE activity of the brain and the heart. The skeletal muscles affected by the disease undergo active degeneration counterbalanced by regeneration between 3 and 14 weeks after birth. The distribution of AChE patches associated with neuromuscular junctions was abnormally scattered in mdx muscles, and in some cases (tibialis and soleus), the number of endplates was more than twice that of normal muscles. There were only minor differences in the concentration and pattern of AChE molecular forms during the acute phase of muscle degeneration and regeneration. After this period, however, we observed a marked deficit in the membrane-bound G4 molecular form of AChE in adult mdx tibialis, gastrocnemius and EDL but not in the plantaris or in the soleus, as compared with their normal counterparts. Whereas the amount of AChE markedly decreased in the serum of normal mice during the first weeks of life, it remained essentially unchanged in the serum of mdx mice. It is likely that this excess of AChE activity in serum originates from the muscles. A deficit in muscle G4 was also reported in other forms of muscular dystrophy in the mouse and chicken. Since it is not correlated to the acute phase of the disease in mdx and also occurs in genetically different dystrophies, it probably represents a secondary effect of the dystrophy.  相似文献   

9.
The extensor indicis and the extensor pollicis longus muscles differentiates from the extensor digitorum profundus muscle. The extensor indicis muscle is an unstable muscle concerning its variations. Kosugi (1989) found the frequency of variations of this muscle to be 20% and described 18 different types of variations of this muscle. This study describes a rare case of the extensor indicis muscle. The extensor indicis muscle develops an accessory tendon in between the extensor indicis and extensor pollicis longus muscle. It passes under the extensor retinaculum. At the level of 2nd metacarpal bone, the accessory extensor indicis tendon is connected to the tendon of the extensor pollicis longus muscle by a intertendinous connection.  相似文献   

10.
In order to evaluate the role played by muscular and extramuscular factors in the development of fatigue in old age, the time course of fatigue in isolated skeletal muscles and spontaneous motor activity and endurance of whole animals were monitored using young (3-6 months) and old (34-36 months) CF57BL/6J mice. The isolated extensor digitorum longus (EDL) and soleus muscles from old mice had smaller (P < 0.05) mass and developed lower (P < 0.02) maximal tetanic tension at 100-Hz stimulation than the muscles of young mice. During stimulation at 30 Hz every 2.5 s, a 50% decline in original tetanic tension occurred by 109 s in young EDL and 129 s in old EDL, but by 482 s in young soleus and 1134 s (projected) in old soleus, indicating more (P < 0.05) resistance to fatigue in old than young soleus. However, the old mice showed significantly fewer (P < 0.002) spontaneous ambulatory movements than the young mice. On a treadmill with a belt speed of 10 m/min at an inclination of 0 degrees, the old mice could only run for 22 min compared to 39 min ran by young mice (P < 0.02). They took more rest periods (P< 0.02) than the young mice. In a quantitative swimming monitor, the old mice swam for a shorter (P < 0.05) time than young mice (20.4 min compared to 28.6 min). Integrated swimming activity at 20 min was smaller (P < 0.05) in old mice than in young mice (413 g/s compared to 628 g/s). Hence increased fatigue in old age is not caused by impairment of processes within the muscles, but by impairment of central or extramuscular processes.  相似文献   

11.
The mechanical properties and the myosin isoform composition were studied in three isolated muscles (EDL, soleus, diaphragm) of mutant mice lacking both dystrophin and utrophin (dko). They were compared with the corresponding muscles of the normal and the dystrophin-deficient (mdx) and the utrophin-deficient (uko) mice. In comparison with mdx muscles, dko muscles show a significant reduction of the normalized isometric force, confirmed by the reduced muscular activity of the whole animal. Kinetics parameters (twitch time-to-peak and half-relaxation time) were slightly reduced, and the maximal speed of shortening of soleus, Vmax, was reduced by 30%. The maximal power output (muW/mm3) was reduced by 50% in dko soleus. In the three muscles studied, the relative myosin heavy chains (MHC) composition showed a shift towards slower isoforms. dko EDL presented a dramatic decrease of the resistance ot tetanic contraction with forced lengthenings (eccentric contractions), while muscle lacking only utrophin (uko mutants) display a normal resistance to this exacting mechanical challenge. These experiments suggest that lack of both dystrophin and utrophin is very detrimental to the mice and that mechanical properties of the muscles may explain the overall phenotype. Moreover these results bring some support to the idea that the expression of utrophin in mdx muscle compensates, to some extent, for the lack of dystrophin.  相似文献   

12.
Contractile performance of cardiac and skeletal muscles may be regulated by cyclic AMP or Ca2+, two second messengers that stimulate the phosphorylation of specific myofibrillar proteins. Cyclic AMP-dependent protein kinase catalyzed the rapid phosphorylation of a single site in the inhibitory subunit of cardiac troponin in vitro and in perfused hearts. Skeletal muscle troponin was not phosphorylated by this enzyme in vivo. Although there was a correlation between cardiac troponin phosphorylation and the positive inotropic response to catecholamines, a biochemical mechanism that could account for a functional relationship between the two processes has not been discovered. Phosphorylation of skeletal muscle myosin was catalyzed by myosin light chain kinase in the presence of Ca2+ and the ubiguitous, multifunctional Ca2+-dependent regulator protein (CDR). The activation of kinase activity appeared to proceed via a trimolecular reaction process in which Ca2+ bound to CDR and the Ca2+.CDR complex then interacted with the enzyme. In rat extensor digitorum longus muscle, a 1 sec tetanic contraction resulted in phosphorylation of myosin light chain with the maximal phosphate incorporated 20 sec after the contraction. The light chain phosphate content declined slowly and correlated to post-tetanic potentiation of isometric twitch tension. Phosphorylation of skeletal muscle myosin may be important in modulating contraction.  相似文献   

13.
Pharyngeal dilator muscles are critical for maintaining upper airway patency in the neonatal period. The present study examined in vitro the contractile properties of a pharyngeal dilator muscle, the sternohyoid, in 1-7-day-old piglets (n = 24). Isometric contraction and half-relaxation times were 36.7 +/- 1.1 and 30.9 +/- 1.2 msec, respectively. Twitch potentiation ('staircase phenomenon') and post-tetanic potentiation were noted following repetitive stimulation. During prolonged repetitive stimulation with a standard (40 Hz) fatigue test, muscle force declined gradually over time, with loss of half of the initial force occurring over 138 +/- 11 sec, and a 2-min fatigue index (ratio of force at 2 min to initial force) of 0.52 +/- 0.03. An additional 10 piglets were studied at ages of 14-20 days. Muscle from older piglets had comparable isometric twitch kinetics as that of younger animals. However, sternohyoid muscle from the older piglets had worse endurance than muscle from the younger animals, as indicated by a shorter time required for force to decrease by half (86 +/- 10 sec, P < 0.01) and a lower 2-min fatigue index (0.36 +/- 0.03, P < 0.01). These data indicate that for the sternohyoid muscle of the newborn piglet (a) physiological properties are consistent with moderate to fast contraction with good endurance, (b) force potentiates during repetitive twitch stimulation and following a brief period of tetanic stimulation, and (c) there is worsening of endurance but no change in isometric twitch kinetics with increasing age during the first weeks of life.  相似文献   

14.
1 Tritium-labelled decamethonium was infused intravenously in 12 cats at final rates of 1.3-4.2 nmol kg-1 min-1 to produce a steady plasma concentration which ranged between 0.21-1.3 mumol/l in different experiments. Muscle contractions were elicited by nerve stimulation and the potential at the end-plate regions of superficial fibres was recorded by extracellular electrodes. 2 Under these conditions, it was not possible to obtain a steady degree of neuromuscular block. The initial decrease in muscle contractions was followed by recovery towards the original value although the concentration of decamethonium in the plasma remained constant, or in some cases rose. The initial depolarization of the end-plate region also waned during the constant infusion of the drug. 3 Once the twitch tension had returned to control values during infusion of the drug, prolongation of the infusion for a total of four hours did not produce a secondary neuromuscular block. 4 Scintillation counting showed that during infusion of labelled decamethonium the radioactivity of the muscles increased progressively with time. The uptake was less in the soleus muscle than in the fast-contracting flexor longus digitorum and extensor longus digitorum muscles. Muscles which had been denervated 12-13 days previously showed a greater uptake of labelled drug than control muscles from the contralateral limb. 5 The labelled drug was localized by autoradiography of frozen sections of leg muscles following intra-arterial injection of decamethonium. Grain counts in individual fibres showed that small amounts of decamethonium had entered the muscle fibres along their entire length, and there was increased uptake of the drug into the cell in the region of the end-plate. 6 The mechanisms underlying the waning of the pharmacological response during constant application of depolarizing drugs are discussed.  相似文献   

15.
To investigate the relationship among fibre type, oxidative potential, and Na(+)-K+ ATPase concentration in skeletal muscle, adult male Wistar rats weighing 259 +/- 8 g (mean +/- SE) were sacrificed and the soleus (SOL), extensor digitorum longus (EDL), red vastus lateralis (RV), and white vastus lateralis (WV) removed. These muscles were chosen as being representative of the two major fibre type populations: slow twitch (SOL) and fast twitch (EDL, RV, WV) and exhibiting either a high (SOL, EDL, RV) or low (WV) oxidative potential. Na(+)-K+ ATPase concentration (pmol.g-1 wet weight), measured by the [3H]ouabain binding technique, differed (p < 0.01) only between the WV (238 +/- 7.9) and the SOL (359 +/- 9.6), EDL (365 +/- 10), and RV (403 +/- 12). Similarly, muscle oxidative potential as measured by the maximal activity of citrate synthase was different (p < 0.01) only between the WV and the other three muscles. Citrate synthase activity (mumol.min-1.g-1 wet weight) was 4.0 +/- 0.7, 12.3 +/- 0.9, 9.1 +/- 0.7, and 11.3 +/- 1.0 in the WV, SOL, EDL, and RV, respectively. These results indicate that Na(+)-K+ ATPase concentration is not related to the speed of contraction but to the oxidative potential of the muscle. Since chronic activity is a primary determinant of oxidative potential, it would be expected that increases in Na(+)-K+ ATPase would accompany increases in muscle utilization.  相似文献   

16.
Rat extensor digitorum longus muscles were overloaded by stretch after removal of the synergist tibialis anterior muscle to determine the relationship between capillary growth, muscle blood flow, and presence of growth factors. After 2 wk, sarcomere length increased from 2.4 to 2.9 micrometers. Capillary-to-fiber ratio, estimated from alkaline phosphatase-stained frozen sections, was increased by 33% (P < 0.0001) and 60% (P < 0.01), compared with control muscles (1.44 +/- 0.06) after 2 and 8 wk, respectively. At 2 wk, the increased capillary-to-fiber ratio was not associated with any changes in mRNA for basic fibroblast growth factor (FGF-2) or its protein distribution. FGF-2 immunoreactivity was present in nerves and large blood vessels but was negative in capillaries, whereas the activity of low-molecular endothelial-cell-stimulating angiogenic factor (ESAF) was 50% higher in stretched muscles. Muscle blood flows measured by radiolabeled microspheres during contractions were not significantly different after 2 or 8 wk (132 +/- 37 and 177 +/- 22 ml. min-1. 100 g-1, respectively) from weight-matched controls (156 +/- 12 and 150 +/- 10 ml. min-1. 100 g-1, respectively). Resistance to fatigue during 5-min isometric contractions (final/peak tension x 100) was similar in 2-wk overloaded and contralateral muscles (85 vs. 80%) and enhanced after 8 wk to 92%, compared with 77% in contralateral muscles and 67% in controls. We conclude that increased blood flow cannot be responsible for initiating expansion of the capillary bed, nor does it explain the reduced fatigue within overloaded muscles. However, stretch can present a mechanical stimulus to capillary growth, acting either directly on the capillary abluminal surface or by upregulating ESAF, but not FGF-2, in the extracellular matrix.  相似文献   

17.
The present study was undertaken to evaluate the effect of lactic acid accumulation on peak tension and relaxation rate of the isometric twitch. Isolated extensor digitorum longus muscle from rat was stimulated electrically at a frequency of 2/s under anaerobic conditions. Comparison was made with muscles in which glycolysis was blocked with iodoacetic acid (IAA). Stimulation of unpoisoned muscles for 3 min decreased tension to 50% and increased relaxation time to 250% of the initial value. Lactate increased 15-fold, and muscle pH decreased from 7.10 to 6.76. Stimulation of IAA-poisoned muscles for 1 min decreased tension to 50% but did not increase the relaxation time. Stimulation of IAA-poisoned muscle resulted in a pronounced decrease (about 50%) of the ATP and total adenine nucleotide content in muscle, whereas only a small decrease (10-15%) occurred in unpoisoned muscle. The main findings in the present study were that tension decline in unpoisoned muscle is closely related to decrease in muscle pH and increase in ADP but not to ATP content per se and that slowing of relaxation rate is closely related to decrease in muscle pH but not to muscle content of ATP or creatine phosphate.  相似文献   

18.
Nitric oxide synthase (NOS) activity was measured in extensor digitorum longus (EDL) and soleus muscles during postnatal development in the rat. At 1 and 2 weeks of age, similar low levels were found in both muscles. After 2 weeks, activity increased significantly only in EDL. Adult NOS activity was significantly higher in EDL than soleus. Thus, the preferential expression of NOS in fast muscle only occurs once the adult pattern of motor activity is established.  相似文献   

19.
The content of phosphoinositids in biomembranes of slow (m.soleus) and fast (m. extensor digitorum longus) twitch muscular fibres (MF) was studied. Biochemical differences in different MF of fast and slow muscles were detected. The content of phosphotidylinosites in plasma membranes, mitochondrial and sarcoplasmic reticulum membranes of fast twitch MF was on average 1.28 times higher than in slow ones. The predominance of phosphatidylinositol-3,4,5-triphosphates in fast twitch MF over slow twitch MF was noted. The content of phosphatidylinoitol-3,4,5-triphosphates in plasma membranes, mitochondrial and sarcoplasmic reticulum membranes of slow twitch MF was 3, 2.35 and 1.25 times higher than in fast twitch MF. It was found that phosphoinositide content in biomembranes of different type MF was unequal which may be used to improve the expansion of understanding of the role of intracellular mediators in MF phenotype regulation.  相似文献   

20.
The possible role of altered extracellular Ca2+ concentration ([Ca2+]o) in skeletal muscle fatigue was tested on isolated slow-twitch soleus and fast-twitch extensor digitorum longus muscles of the mouse. The following findings were made. 1) A change from the control solution (1.3 mM [Ca2+]o) to 10 mM [Ca2+]o, or to nominally Ca2+-free solutions, had little effect on tetanic force in nonfatigued muscle. 2) Almost complete restoration of tetanic force was induced by 10 mM [Ca2+]o in severely K+-depressed muscle (extracellular K+ concentration of 10-12 mM). This effect was attributed to a 5-mV reversal of the K+-induced depolarization and subsequent restoration of ability to generate action potentials (inferred by using the twitch force-stimulation strength relationship). 3) Tetanic force depressed by lowered extracellular Na+ concentration (40 mM) was further reduced with 10 mM [Ca2+]o. 4) Tetanic force loss at elevated extracellular K+ concentration (8 mM) and lowered extracellular Na+ concentration (100 mM) was partially reversed with 10 mM [Ca2+]o or markedly exacerbated with low [Ca2+]o. 5) Fatigue induced by using repeated tetani in soleus was attenuated at 10 mM [Ca2+]o (due to increased resting and evoked forces) and exacerbated at low [Ca2+]o. These combined results suggest, first, that raised [Ca2+]o protects against fatigue rather than inducing it and, second, that a considerable depletion of [Ca2+]o in the transverse tubules may contribute to fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号