首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A characteristic feature of heart failure is the progressive worsening of ventricular function over months or years despite the absence of clinically apparent intercurrent adverse events. The mechanism or mechanisms responsible for this hemodynamic deterioration are not known but may be related to progressive intrinsic contractile dysfunction of residual viable cardiac myocytes, or to ongoing degeneration and loss of myocytes, or both. This report will address the concept of ongoing cardiac myocyte loss that may occur during the course of evolving heart failure viewed from the perspective of apoptosis or "programmed cell death" as the potential mediator of cardiac muscle cell loss. In recent years, several studies have shown that constituent myocytes of failed explanted human hearts and hearts of animals with experimentally induced heart failure undergo apoptosis. Recent studies have shown that cardiac myocyte apoptosis also occurs after acute myocardial infarction, as well as in the hypertrophied heart and the aging heart, conditions frequently associated with the development of heart failure. Considerable work has also been conducted and novel concepts advanced to explain potential molecular triggers of cardiac myocyte apoptosis in heart failure. Although available data support the existence of myocyte apoptosis in the failing heart, questions essential to our understanding of the importance of myocyte apoptosis in this disease process remain unanswered. Lacking are studies aimed at identifying physiological factors inherent to heart failure that trigger myocyte apoptosis. Also lacking are studies that address the importance of myocyte apoptosis in the progression of left ventricular dysfunction. If loss of cardiac myocytes through apoptosis can be shown to be an important contributor to the progression of heart failure, and if factors that trigger apoptosis in the heart can be identified, such knowledge can potentially lead to the development of novel therapeutic modalities aimed at preventing, or at the very least retarding, the process of progressive ventricular dysfunction and the ultimate transition toward end-stage, intractable heart failure.  相似文献   

2.
The present investigation was designed to evaluate whether end-stage cardiac failure in patients affected by dilated cardiomyopathy (DC) was dependent upon extensive myocyte cell death with reduction in muscle mass or was the consequence of collagen accumulation in the myocardium independently from myocyte cell loss. In addition, the mechanisms of ventricular dilation were analysed in order to determine whether the changes in cardiac anatomy were important variables in the development of intractable congestive heart failure. DC is characterized by chamber dilation, myocardial scarring and myocyte hypertrophy in the absence of significant coronary atherosclerosis. However, the relative contribution of each of these factors to the remodeling of the ventricle is currently unknown. Moreover, no information is available concerning the potential etiology of collagen deposition in the myocardium and the changes in number and size of ventricular myocytes with this disease. Morphometric methodologies were applied to the analysis of 10 DC hearts obtained from patients undergoing cardiac transplantation. An identical number of control hearts was collected from individuals who died from causes other than cardiovascular diseases. DC produced a 2.2-fold and 4.2-fold increase in left ventricular weight and chamber volume resulting in a 48% reduction in mass-to-volume ratio. In the right ventricle, tissue weight and chamber size were both nearly doubled. Left ventricular dilation was the result of a 59% lengthening of myocytes and a 20% increase in the transverse circumference due to slippage of myocytes within the wall. Myocardial scarring represented by segmental, replacement and interstitial fibrosis occupied approximately 20% of each ventricle, and was indicative of extensive myocyte cell loss. However, myocyte number was not reduced and average cell volume increased 2-fold in both ventricles. In conclusion, reactive growth processes in myocytes and architectural rearrangement of the muscle compartment of the myocardium appear to be the major determinants of ventricular remodeling and the occurrence of cardiac failure in DC.  相似文献   

3.
Heart failure can result from a variety of causes, including volume or pressure overload and contractile disturbances of the myocardium. Loss of myocytes is an important mechanism in the development of cardiac failure. In general, myocyte death resulting in progressive deterioration of myocardial function is attributed to necrosis, but recently the involvement of programmed cell death (mainly apoptosis) has been suggested. The authors review the possible role of myocardial apoptosis in developing of heart failure. Subcellular genetic regulatory processes as well as the pharmacological susceptibility of programmed cell death are also discussed. In heart failure, significant amount of cardiac myocytes undergoes apoptosis, that unlike necrosis can be prevented. Specific inhibition of this process could mean a considerable part of cardioprotection after thorough understanding of the underlying cellular mechanisms.  相似文献   

4.
Introduced several decades ago, the dogma persists that cardiac myocytes are terminally differentiated cells and that division of muscle cells is impossible in the adult heart. More recently, nuclear mitotic divisions in myocytes occasionally were seen, but those observations were challenged on the assumption that the rate of cell proliferation was inconsequential for actual tissue regeneration. Moreover, mitoses were never detected in normal myocardium. However, the analysis of routine histologic preparations constituted the basis for the belief that myocytes were unable to reenter the cell cycle and divide, ignoring the limitations of these techniques. We report here by confocal microscopy that 14 myocytes per million were in mitosis in control human hearts. A nearly 10-fold increase in this parameter was measured in end-stage ischemic heart disease (152 myocytes per million) and in idiopathic dilated cardiomyopathy (131 myocytes per million). Because the left ventricle contains 5.8 x 10(9) myocytes, these mitotic indices imply that 81.2 x 10(3), 882 x 10(3), and 760 x 10(3) myocytes were in mitosis in the entire ventricular myocardium of control hearts and hearts affected by ischemic and idiopathic dilated cardiomyopathy, respectively. Additionally, mitosis lasts less than 1 hr, suggesting that large numbers of myocytes can be formed in the nonpathologic and pathologic heart with time. Evidence of cytokinesis in myocytes was obtained, providing unequivocal proof of myocyte proliferation.  相似文献   

5.
BACKGROUND: Although multiple studies have shown that the left ventricular assist device (LVAD) improves distorted cardiac geometry, the pathological mechanisms of the "reverse remodeling" of the heart are unknown. Our goal was to determine the effects of LVAD support on cardiac myocyte size and shape. METHODS AND RESULTS: Isolated myocytes were obtained at cardiac transplantation from 30 failing hearts (12 ischemic, 18 nonischemic) without LVAD support, 10 failing hearts that received LVAD support for 75+/-15 days, and 6 nonfailing hearts. Cardiac myocyte volume, length, width, and thickness were determined by use of previously validated techniques. Isolated myocytes from myopathic hearts exhibited increased volume, length, width, and length-to-thickness ratio compared with normal myocytes (P<0.05). However, there were no differences in any parameter between myocytes from ischemic and nonischemic cardiomyopathic hearts. Long-term LVAD support resulted in a 28% reduction in myocyte volume, 20% reduction in cell length, 20% reduction in cell width, and 32% reduction in cell length-to-thickness ratio (P<0.05). In contrast, LVAD support was associated with no change in cell thickness. These cellular changes were associated with reductions in left ventricular dilation and left ventricular mass measured echocardiographically in 6 of 10 LVAD-supported patients. CONCLUSIONS: These studies suggest that the regression of cellular hypertrophy is a major contributor to the "reverse remodeling" of the heart after LVAD implantation. The favorable alterations in geometry that occur in parallel fashion at both the organ and cellular levels may contribute to reduced wall stress and improved mechanical performance after LVAD support.  相似文献   

6.
Programmed cell death in the myocardium has been linked to ischemia reperfusion injury as well as to excessive mechanical forces associated with increases in ventricular loading. Moreover, hypoxia activates the suicide program of cardiac myocytes in vitro. Because the supplied portion of the ventricular wall is ischemic and subjected to high levels of systolic and diastolic stresses (acutely after coronary artery occlusion), apoptosis and necrosis may contribute independently to myocyte cell death after infarction. Therefore, myocardial infarction was produced in rats, and, after the determination of ventricular hemodynamics, the contribution of apoptotic and/or necrotic myocyte cell death to infarct size was measured quantitatively from 20 minutes to 7 days after coronary artery occlusion. Programmed cell death was assessed by the terminal deoxynucleotidyl transferase assay and by the electrophoretic detection of DNA laddering. Myocyte necrosis was evaluated by myosin monoclonal Ab labeling. Moreover, the expression of Bcl-2, Bax, and Fas proteins in myocytes was examined by immunocytochemistry. Myocyte cell death by apoptosis and necrosis comprised nearly 3 million myocytes at 2 hours. Apoptotic cell death involved 2.8 million cells and necrotic cell death only 90,000 myocytes. Apoptosis continued to represent the major independent form of myocyte cell death, affecting 6.6 million myocytes at 4.5 hours. Myocyte necrosis peaked at 1 day, including 1.1 million myocytes. DNA electrophoretic analysis confirmed these observations by showing nucleosomal ladders at 2-3 hours, 4.5 hours, 1 day, and 2 days after coronary artery occlusion. Myocytes showing both DNA strand breaks and myosin labeling were a prominent aspect of myocardial damage only after 6 hours. Finally, the expression of Bcl-2 and Fas in myocytes increased 18-fold and 131-fold, respectively. In conclusion, programmed myocyte cell death is the major form of myocardial damage produced by occlusion of a major epicardial coronary artery, whereas necrotic myocyte cell death follows apoptosis and contributes to the progressive loss of cells with time after infarction. The enhanced expression of Fas may be implicated in the activation of apoptosis in spite of the increase in Bcl-2, which tends to preserve cell survival.  相似文献   

7.
To determine whether angiotensin II (Ang II) stimulation of adult ventricular myocytes in vitro results in cellular hypertrophy, the changes in myocyte volume and protein content per cell were examined by confocal microscopy. Moreover, the possibility was considered that the upregulation of Ang II receptors on myocytes after infarction may potentiate and/or accelerate Ang II-mediated myocyte growth. Left ventricular myocytes isolated from control and failing hearts 3 days after infarction were cultured for 3 and 7 days in the presence of Ang II. Normal myocytes did not show an increase in volume and protein content at 3 days, but a 16% and 20% increase in these respective parameters was found at 7 days. Cell growth was faster and greater in myocytes from postinfarcted hearts. In these cells, myocyte volume increased 23% and protein content increased 28% at 3 days after Ang II administration. The higher hypertrophic reaction of myocytes from infarcted hearts occurred in spite of a 19% larger volume at isolation. In both groups of myocytes, the AT1 receptor blocker losartan completely inhibited the consequences of Ang II. Conversely, the AT2 receptor antagonist PD123319 had no effect on Ang II-induced hypertrophy. In conclusion, Ang II promotes myocyte growth through the activation of AT1 receptors, which modulate the time and magnitude of this cellular response.  相似文献   

8.
9.
BACKGROUND: Increased expression of Ca2+-sensitive protein kinase C (PKC) isoforms may be important markers of heart failure. Our aim was to determine the relative expression of PKC-beta1, -beta2, and -alpha in failed and nonfailed myocardium. METHODS AND RESULTS: Explanted hearts of patients in whom dilated cardiomyopathy or ischemic cardiomyopathy was diagnosed were examined for PKC isoform content by Western blot, immunohistochemistry, enzymatic activity, and in situ hybridization and compared with nonfailed left ventricle. Quantitative immunoblotting revealed significant increases of >40% in PKC-beta1 (P<0.05) and -beta2 (P<0.04) membrane expression in failed hearts compared with nonfailed; PKC-alpha expression was significantly elevated by 70% in membrane fractions (P<0.03). PKC-epsilon expression was not significantly changed. In failed left ventricle, PKC-beta1 and -beta2 immunostaining was intense throughout myocytes, compared with slight, scattered staining in nonfailed myocytes. PKC-alpha immunostaining was also more evident in cardiomyocytes from failed hearts with staining primarily localized to intercalated disks. In situ hybridization revealed increased PKC-beta1 and -beta2 mRNA expression in cardiomyocytes of failed heart tissue. PKC activity was significantly increased in membrane fractions from failed hearts compared with nonfailed (1021+/-189 versus 261+/-89 pmol. mg-1. min-1, P<0.01). LY333531, a selective PKC-beta inhibitor, significantly decreased PKC activity in membrane fractions from failed hearts by 209 pmol. min-1. mg-1 (versus 42.5 pmol. min-1. mg-1 in nonfailed, P<0.04), indicating a greater contribution of PKC-beta to total PKC activity in failed hearts. CONCLUSIONS: In failed human heart, PKC-beta1 and -beta2 expression and contribution to total PKC activity are significantly increased. This may signal a role for Ca2+-sensitive PKC isoforms in cardiac mechanisms involved in heart failure.  相似文献   

10.
BACKGROUND: Recombinant human growth hormone (GH) improves in vivo cardiac function in rats with postinfarction heart failure (MI). We examined the effects of growth hormone (14 days of 3.5 mg. kg-1. d-1 begun 4 weeks after MI) on contractile reserve in left ventricular myocytes from rats with chronic postinfarction heart failure. METHODS AND RESULTS: Cell shortening and [Ca2+]i were measured with the indicator fluo 3 in myocytes from MI, MI+GH, control, and normal animals treated with GH (C+GH) under stimulation at 0.5 Hz at 37 degrees C. Cell length was similar in MI and MI+GH rats (150+/-5 and 157+/-5 microm) and was greater in these groups than in the control and C+GH groups (140+/-4 and 139+/-4 microm, P<0.05). At baseline perfusate calcium of 1.2 mmol/L, myocyte fractional shortening and [Ca2+]i transients were similar among the 4 groups. We then assessed contractile reserve by measuring the increase in myocyte fractional shortening in the presence of high-perfusate calcium of 3.5 mmol/L. In the control and C+GH groups, myocyte fractional shortening and peak systolic [Ca2+]i were similarly increased in the presence of high-perfusate calcium. In the presence of high-perfusate calcium, both myocyte fractional shortening and peak systolic [Ca2+]i were depressed in the MI compared with the control groups. In contrast, myocyte fractional shortening (14.1+/-.9% versus 11.1+/-.9%, P<0.05) and peak systolic [Ca2+]i (647+/-43 versus 509+/-37 nmol/L, P<0.05) were significantly higher in MI+GH than in MI rats and were comparable to controls. Left ventricular myocyte expression of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA-2) and left ventricular SERCA-2 protein levels were increased in MI+GH compared with MI rats. CONCLUSIONS: Calcium-dependent contractile reserve is depressed in myocytes from rats with postinfarction heart failure. Long-term growth hormone therapy increases contractile reserve by restoring normal augmentation of systolic [Ca2+]i in myocytes from rats with postinfarction heart failure.  相似文献   

11.
BACKGROUND: Receptor-mediated activation of myocardial Gq signaling is postulated as a biochemical mechanism transducing pressure-overload hypertrophy. The specific effects of Gq activation on the functional and morphological adaptations to pressure overload are not known. METHODS AND RESULTS: To determine the effects of intrinsic myocyte G alpha q signaling on the left ventricular hypertrophic response to experimental pressure overload, transgenic mice overexpressing G alpha q specifically in the heart (G alpha q-25) and nontransgenic siblings underwent microsurgical creation of transverse aortic coarctation and the morphometric, functional, and molecular characteristics of these pressure-overloaded hearts were compared at increasing times after surgery. Before aortic banding, isolated G alpha q-25 ventricular myocytes exhibited contractile depression (depressed +dl/dt and -dl/dt) and G alpha q-25 hearts showed a pattern of fetal gene expression similar to the known characteristics of nontransgenic pressure-overloaded mice. Three weeks after transverse aortic banding, G alpha q-25 left ventricles hypertrophied to a similar extent (approximately 30% increase) as nontransgenic mice. However, whereas nontransgenic mice exhibited concentric left ventricular remodeling with maintained ejection performance (compensated hypertrophy), G alpha q-25 left ventricles developed eccentric hypertrophy and ejection performance deteriorated, ultimately resulting in left heart failure (decompensated hypertrophy). The signature hypertrophy-associated progress of fetal cardiac gene expression observed at baseline in G alpha q-25 developed after aortic banding of nontransgenic mice but did not significantly change in aortic-banded G alpha q-25 mice. CONCLUSIONS: Intrinsic cardiac myocyte G alpha q activation stimulates fetal gene expression and depresses cardiac myocyte contractility. Superimposition of the hemodynamic stress of pressure overload on G alpha q overexpression stimulates a maladaptive form of eccentric hypertrophy that leads to rapid functional decompensation. Therefore G alpha q-stimulated cardiac hypertrophy is functionally deleterious and compromises the ability of the heart to adapt to increased mechanical load. This finding supports a reevaluation of accepted concepts regarding the mechanisms for compensation and decompensation in pressure-overload hypertrophy.  相似文献   

12.
End stage heart failure due to ischemic (ICM) or dilated (DCM) cardiomyopathy is characterized by a dilated, relatively thin-walled ventricle. The hypothesis has been proposed that the structural basis of ventricular expansion is due to side-to-side slippage of myocytes within the wall. Although this represents one potential mechanism for the observed phenomena of chamber dilatation and subsequent wall thinning, the degree of slippage claimed is not necessarily in harmony with the magnitude of chamber enlargement and mural thinning. Moreover, sarcomere extension was not examined in the base to the apical regions of the heart, leaving open the question as to the role of changes in resting sarcomere length in acute chamber dilatation. In this regard, an alternative etiology for the detrimental cardiac architectural rearrangement seen in dilated failure can be supplied by postulating the occurrence of maladaptive remodeling of cardiac myocyte morphology. In this model, myocytes increase in length by an increase in the number of sarcomeres in series, thus increasing chamber diameter in an attempt to maintain cardiac output. However, these cells do not enlarge to any significant degree in the transverse diameter preventing the heart from developing adequate force. This hypothesis is supported by recent evidence from patients with ICM and DCM indicating that myocyte lengthening alone could account for all the dilatation observed. Furthermore, it appears that the thinning of the ventricular wall in failure is due to inadequate transverse growth of cardiac myocytes coupled with scattered myocyte cell loss throughout the ventricular wall.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Systolic [Ca2+]i-transients have been shown to be depressed in isolated ventricular myocytes from patients with terminal heart failure compared to controls. Experiments were performed in human ventricular cells to investigate whether this reduced systolic [Ca2+]i-transient may be due to a decreased Ca(2+)-content of the sarcoplasmic reticulum (SR). Single myocytes were isolated from left ventricular myocardium of patients with terminal heart failure undergoing cardiac transplantation. These results were compared to those obtained from cells of healthy donor hearts that were not suitable for transplantation for technical reasons. [Ca2+]i-transients were recorded from isolated cells under voltage clamp perfused internally with the Ca(2+)-indicator fura-2. The Ca(2+)-content of the SR was estimated by rapid extracellular application of caffeine (10 mM) to open the Ca(2+)-release channel of the SR and comparison of the caffeine-induced [Ca2+]i-transients in cells from patients with heart failure and from controls without heart failure. Upon steady-state depolarizations to +10 mV (maximum of the Ca(2+)-current), [Ca2+]i-transients in cells from patients with heart failure were significantly smaller than in myocytes from undiseased hearts (333 +/- 26 v 596 +/- 80 nM, P < 0.05). Application of caffeine caused a [Ca2+]i-transient that was always larger than during depolarization. Caffeine-induced [Ca2+]i-transients were significantly smaller in cells from diseased hearts compared with controls (970 +/- 129 v 2586 +/- 288 nM, P < 0.01). A positive correlation was found between left ventricular ejection fraction and caffeine-induced [Ca2+]i-transients in these cells. It is concluded, that depressed [Ca2+]i-transients in myocytes from patients with heart failure may be caused by a decreased Ca(2+)-content of the SR possibly due to an altered Ca(2+)-ATPase activity in these hearts. It is not necessary to postulate an additional defect of the Ca(2+)-release function of the SR to account for the alterations of intracellular (Ca2+]i-handling.  相似文献   

14.
Neuregulins (i.e. neuregulin-1 (NRG1), also called neu differentiation factor, heregulin, glial growth factor, and acetylcholine receptor-inducing activity) are known to induce growth and differentiation of epithelial, glial, neuronal, and skeletal muscle cells. Unexpectedly, mice with loss of function mutations of NRG1 or of either of two of their cognate receptors, ErbB2 and ErbB4, die during midembryogenesis due to the aborted development of myocardial trabeculae in ventricular muscle. To examine the role of NRG and their receptors in developing and postnatal myocardium, we studied the ability of a soluble NRG1 (recombinant human glial growth factor 2) to promote proliferation, survival, and growth of isolated neonatal and adult rat cardiac myocytes. Both ErbB2 and ErbB4 receptors were found to be expressed by neonatal and adult ventricular myocytes and activated by rhGGF2. rhGGF2 (30 ng/ml) provoked an approximate 2-fold increase in embryonic cardiac myocyte proliferation. rhGGF2 also promoted survival and inhibited apoptosis of subconfluent, serum-deprived myocyte primary cultures and also induced hypertrophic growth in both neonatal and adult ventricular myocytes, which was accompanied by enhanced expression of prepro-atrial natriuretic factor and skeletal alpha-actin. Moreover, NRG1 mRNA could be detected in coronary microvascular endothelial cell primary cultures prepared from adult rat ventricular muscle. NRG1 expression in these cells was increased by endothelin-1, another locally acting cardiotropic peptide within the heart. The persistent expression of both a neuregulin and its cognate receptors in the postnatal and adult heart suggests a continuing role for neuregulins in the myocardial adaption to physiologic stress or injury.  相似文献   

15.
OBJECTIVES: The purpose of the present study was to examine the expression of the endothelial-type nitric oxide synthase (NOS III) and the inducible-type NOS (NOS II) in human myocardium and their regulation in heart failure from patients with different etiologies. BACKGROUND: In heart failure, plasma levels of nitrates were found to be elevated. However, data on myocardial NOS expression in heart failure are conflicting. METHODS: Using RNase protection analysis and Western blotting, the expression of NOS III and NOS II was investigated in ventricular myocardium from nonfailing (NF) hearts (n=5) and from failing hearts of patients with idiopathic dilated cardiomyopathy (dCMP, n=14), ischemic cardiomyopathy (iCMP, n=9) or postmyocarditis cardiomyopathy (mCMP, n=7). Furthermore, immunohistochemical studies were performed to localize NOS III and NOS II within the ventricular myocardium. RESULTS: In failing human hearts, NOS III mRNA levels were increased to 180% in dCMP, 200% in iCMP and to 210% in mCMP as compared to NF hearts. Similarly, in Western blots (using constitutively expressed beta-tubulin as a reference) NOS III protein expression was increased about twofold in failing compared to NF hearts. Immunohistochemical studies with a selective antibody to NOS III showed no obvious differences in the staining of the endothelium of cardiac blood vessels from NF and failing human hearts. However, NOS III-immunoreactivity in cardiomyocytes was significantly more intense in failing compared to NF hearts. Low expression of NOS II mRNA was detected in only 2 of 30 failing human hearts and was not found in NF hearts. Inducible-type NOS protein was undetectable in either group. CONCLUSIONS: We conclude that the increased NOS III expression in the ventricular myocardium of failing human hearts may contribute to the contractile dysfunction observed in heart failure and/or may play a role in morphologic alterations such as hypertrophy and apoptosis of cardiomyocytes.  相似文献   

16.
Intracellular calcium overload of guinea pig cardiomyocytes is accompanied by troponin T cross-linking, which is revealed by changes in immunoreactivity of anti-troponin T antibodies. We presently investigated whether the same process is detectable in the human heart. Immunohistochemistry shows myofibrillar staining with BN-59 anti-troponin T antibody with rare cardiomyocytes in samples obtained at surgery, whereas approximately 50% of myocytes are labeled in heart samples taken at autopsy within 3 hours of death, and every cardiomyocyte is stained after exposure of biopsy sections to 10 mmol/L calcium. Western blot analysis shows reactive polypeptides of approximately 70 and 85 to 90 kd in addition to troponin T in both treated and autopsy heart sections. Neither reactivity in immunohistochemistry nor additional reactive polypeptides in Western blot are detectable when calpain or transglutaminase is inhibited during exposure of sections to high calcium. Troponin T crosslinking occurs also in isolated myofibrils, which show staining with BN-59 at either sarcomeric A or I bands. Labeling with TdT-mediated dUTP nick and labeling (TUNEL) to demonstrate apoptosis reveals DNA fragmentation in BN-59-positive myocytes. Thus, troponin T cross-linking occurs in human cardiac myocytes concomitantly with apoptosis and autopsy autolysis, suggesting that similar cytosolic alterations can be produced by different types of myocyte death.  相似文献   

17.
OBJECTIVES: The present investigation was designed to evaluate the growth reserve capacity of the aged and senescent myocardium. BACKGROUND: Aging affects the ability of the heart to sustain alterations in ventricular loading, and this phenomenon may be coupled with attenuation of the hypertrophic reaction of the myocardium. However, because myocyte cellular hyperplasia has been documented experimentally in the old heart, a similar adaptation may also occur in humans and play a role in this process. METHODS: The changes in number and size of ventricular myocytes were measured quantitatively in pathologic hearts of elderly subjects. Morphometric methodologies were applied to the analysis of 13 hypertrophic hearts obtained at autopsy from patients 80 +/- 4 (mean +/- SD) years old. An identical number of nonhypertrophic hearts collected from subjects 76 +/- 7 years old were used as control hearts. RESULTS: A 71% increase in left ventricular weight was associated with a 33% increase in average myocyte cell volume per nucleus and a 36% augmentation in the total number of myocyte nuclei in the ventricular myocardium. However, a 55% increase in right ventricular weight was the result of a 59% increase in the aggregate number of myocyte nuclei, with no change in myocyte cell volume. These cellular processes were associated with a 95% and 83% enlargement of the myocardial interstitium in the left and right ventricle, respectively. CONCLUSIONS: Myocyte nuclear and possibly cellular hyperplasia appear to be the prevailing growth mechanism of the overloaded aging myocardium. Proliferation of myocyte nuclei and connective tissue accumulation are the major determinants of ventricular remodeling in the hypertrophic senescent heart.  相似文献   

18.
19.
BACKGROUND: Although cardiac sympathetic nerve dysfunction is related to poor clinical outcome, a critical sympathetic dysfunction level for predicting cardiac death is still unclear. The current study was designed to investigate which indices derived from metaiodobenzylguanidine (MIBG) imaging have prognostic value compared with clinical and cardiac function variables, and to determine the threshold of cardiac MIBG activity for identifying patients likely to suffer cardiac death in both failing and nonfailing hearts. METHODS AND RESULTS: Myocardial I-123-MIBG activity was quantified as a heart-to-mediastinum ratio in 414 consecutive patients, 173 (42%) of whom had symptomatic heart failure. After cardiac function measurements, patients were followed up with an end-point of cardiac or noncardiac death. During a mean follow-up period of 22 months, 37 cardiac deaths occurred: 23 resulted from heart failure, 9 were sudden cardiac deaths, and 5 were fatal myocardial infarctions. Multivariate analysis using the Wald chi2 and the Cox proportional hazard model revealed that late heart-to-mediastinum ratio, the use of nitrates, early heart-to-mediastinum ratio, and left ventricular ejection fraction were independent predictors of cardiac death; late heart-to-mediastinum ratio, New York Heart Association (NYHA) class, the presence of previous myocardial infarction, and age were independent predictors of heart failure and sudden cardiac death. Late heart-to-mediastinum ratio was the most powerful predictor of overall cardiac death among the variables. The Kaplan-Meier analysis showed that a late heart-to-mediastinum ratio of 1.74 or less, age greater than 60 years, the presence of myocardial infarction, and NYHA functional class 3 or 4 strongly indicated poor clinical outcomes. Furthermore, the more powerful incremental prognostic values were obtained by using MIBG imaging in combination with conventional clinical variables. CONCLUSIONS: Impaired cardiac sympathetic innervation assessed by MIBG activity has the greatest potential for predicting cardiac death and may be useful for identifying a threshold level for selecting patients at risk for death by heart failure, sudden cardiac death, and fatal myocardial infarction.  相似文献   

20.
The present study explored the possibility that an alteration in the transmembrane calcium current (ICa), through its ability to modulate Ca2+ release from the sarcoplasmic reticulum, could contribute to the depressed peak [Ca2+]i we previously observed in hypertrophied failing myocardium. Whole-cell patch clamp was used to measure ICa in single guinea pig ventricular myocytes isolated from hearts of normal guinea pigs and from guinea pig hearts in which hypertrophy and failure were induced by gradually developing left ventricular pressure overload subsequent to ascending aortic banding of young animals. Membrane capacitance (Cm) was significantly greater. and ICa, normalized for Cm, was significantly lower in myocytes from hypertrophied failing hearts. Myocytes from hypertrophied failing hearts did not differ significantly from normal myocytes in terms of the voltage-dependence of the activation variable (d) of ICa (except at -30 mV), the time course of removal of inactivation of ICa, and the time constant of decay of ICa. Measurement of the voltage dependence of the inactivation variable (f) of ICa showed that significantly more steady-state inactivation was present at 0, -10, and -20 mV in myocytes from hypertrophied failing hearts. Multiple regression analysis of all data indicated that ICa density decreased with increasing myocyte membrane area (as reflected by Cm) irrespective of any specific effects of hypertrophy and heart failure. We conclude that ICa, normalized for Cm, is significantly reduced in myocytes isolated from hypertrophied failing hearts, probably by a process associated with increased cell size, per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号