首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequency-domain fluorescence lifetime imaging microscopy (FLIM) has become a commonly used technique to measure lifetimes in biological systems. However, lifetime measurements are strongly dependent on numerous experimental parameters. Here, we describe a complete calibration and characterization of a FLIM system and suggest parameter optimization for minimizing measurement errors during acquisition. We used standard fluorescent molecules and reference biological samples, exhibiting both single and multiple lifetime components, to calibrate and evaluate our frequency domain FLIM system. We identify several sources of lifetime precision degradation that may occur in FLIM measurements. Following a rigorous calibration of the system and a careful optimization of the acquisition parameters, we demonstrate fluorescence lifetime measurements accuracy and reliability. In addition, we show its potential on living cells by visualizing FRET in CHO cells. The proposed calibration and optimization protocol is suitable for the measurement of multiple lifetime components sample and is applicable to any frequency domain FLIM system. Using this method on our FLIM microscope enabled us to obtain the best fluorescence lifetime precision accessible with such a system. Microsc. Res. Tech., 2009. © 2008 Wiley-Liss, Inc.  相似文献   

2.
Fluorescence imaging of green fluorescent protein (GFP) may be used to locate proteins in live cells and fluorescence lifetime imaging (FLIM) may be employed to probe the local microenvironment of proteins. Here we apply FLIM to GFP-tagged proteins at the cell surface and at an inhibitory natural killer (NK) cell immunological synapse (IS). We present a novel quantitative analysis of fluorescence lifetime images that we believe is useful to determine whether apparent FLIM heterogeneity is statistically significant. We observe that, although the variation of observed fluorescence lifetime of GFP-tagged proteins at the cell surface is close to the expected statistical range, the lifetime of GFP-tagged proteins in cells is shorter than recombinant GFP in solution. Furthermore the lifetime of GFP-tagged major histocompatibility complex class I protein is shortened at the inhibitory NK cell IS compared with the unconjugated membrane. Following our previous work demonstrating the ability of FLIM to report the local refractive index of GFP in solution, we speculate that these lifetime variations may indicate local refractive index changes. This application of our method for detecting small but significant differences in fluorescence lifetimes shows how FLIM could be broadly useful in imaging discrete membrane environments for a given protein.  相似文献   

3.
Video-rate fluorescence lifetime-resolved imaging microscopy (FLIM) is a quantitative imaging technique for measuring dynamic processes in biological specimens. FLIM offers valuable information in addition to simple fluorescence intensity imaging; for instance, the fluorescence lifetime is sensitive to the microenvironment of the fluorophore allowing reliable differentiation between concentration differences and dynamic quenching. Homodyne FLIM is a full-field frequency-domain technique for imaging fluorescence lifetimes at every pixel of a fluorescence image simultaneously. If a single modulation frequency is used, video-rate image acquisition is possible. Homodyne FLIM uses a gain-modulated image intensified charge-coupled device (ICCD) detector, which unfortunately is a major contribution to the noise of the measurement. Here we introduce image analysis for denoising homodyne FLIM data. The denoising routine is fast, improves the extraction of the fluorescence lifetime value(s) and increases the sensitivity and fluorescence lifetime resolving power of the FLIM instrument. The spatial resolution (especially the high spatial frequencies not related to noise) of the FLIM image is preserved, because the denoising routine does not blur or smooth the image. By eliminating the random noise known to be specific to photon noise and from the intensifier amplification, the fidelity of the spatial resolution is improved. The polar plot projection, a rapid FLIM analysis method, is used to demonstrate the effectiveness of the denoising routine with exemplary data from both physical and complex biological samples. We also suggest broader impacts of the image analysis for other fluorescence microscopy techniques (e.g. super-resolution imaging).  相似文献   

4.
A spectrograph with continuous wavelength resolution has been integrated into a frequency‐domain fluorescence lifetime‐resolved imaging microscope (FLIM). The spectral information assists in the separation of multiple lifetime components, and helps resolve signal cross‐talking that can interfere with an accurate analysis of multiple lifetime processes. This extends the number of different dyes that can be measured simultaneously in a FLIM measurement. Spectrally resolved FLIM (spectral‐FLIM) also provides a means to measure more accurately the lifetime of a dim fluorescence component (as low as 2% of the total intensity) in the presence of another fluorescence component with a much higher intensity. A more reliable separation of the donor and acceptor fluorescence signals are possible for Förster resonance energy transfer (FRET) measurements; this allows more accurate determinations of both donor and acceptor lifetimes. By combining the polar plot analysis with spectral‐FLIM data, the spectral dispersion of the acceptor signal can be used to derive the donor lifetime – and thereby the FRET efficiency – without iterative fitting. The lifetime relation between the donor and acceptor, in conjunction with spectral dispersion, is also used to separate the FRET pair signals from the donor alone signal. This method can be applied further to quantify the signals from separate FRET pairs, and provide information on the dynamics of the FRET pair between different states.  相似文献   

5.
Fluorescent protein-based FRET is a powerful method for visualizing protein-protein interactions and biochemical reactions in living cells. It can be difficult, however, to avoid photobleaching when observing fluorescent cells under the microscope, especially those expressing CFP. We compared the sensitivity of two protein-based FRET pairs to light-induced fluorescence changes in the donor, on FRET determination by fluorescence lifetime imaging microscopy (FLIM). Thanks to the very low excitation light levels of the time- and space-correlated single photon counting (TSCSPC) method, FLIM acquisitions were achieved without donor photobleaching. Here, we show that photobleaching of CFP by a mercury lamp under the microscope induced a decrease in the mean fluorescence lifetime, which interfered with FRET determination between CFP and YFP. Importantly, the range of light-induced variation of the mean fluorescence lifetime of CFP was not proportional to the decrease in the steady state fluorescence intensity and varied from cell to cell. The choice of the CFP/YFP pair therefore requires that the cells be observed and analyzed at very low light levels during the whole FRET experiment. In contrast, the GFP/mCherry pair provided an accurate FRET measurement by FLIM, even if some GFP photobleaching took place. We thus demonstrate that CFP can be an unreliable donor for FRET determination in living cells, due to its photosensitivity properties. We demonstrate that the GFP/mCherry pair is better suited for FRET measurement by FLIM in living cells than the CFP/YFP pair.  相似文献   

6.
Fluorescence lifetime imaging (FLIM) uses the fact that the fluorescence lifetime of a fluorophore depends on its molecular environment but not on its concentration. Molecular effects in a sample can therefore be investigated independently of the variable, and usually unknown concentration of the fluorophore. There is a variety of technical solutions of lifetime imaging in microscopy. The technical part of this paper focuses on time‐domain FLIM by multidimensional time‐correlated single photon counting, time‐domain FLIM by gated image intensifiers, frequency‐domain FLIM by gain‐modulated image intensifiers, and frequency‐domain FLIM by gain‐modulated photomultipliers. The application part describes the most frequent FLIM applications: Measurement of molecular environment parameters, protein‐interaction measurements by Förster resonance energy transfer (FRET), and measurements of the metabolic state of cells and tissue via their autofluorescence. Measurements of local environment parameters are based on lifetime changes induced by fluorescence quenching or conformation changes of the fluorophores. The advantage over intensity‐based measurements is that no special ratiometric fluorophores are needed. Therefore, a much wider selection of fluorescence markers can be used, and a wider range of cell parameters is accessible. FLIM‐FRET measures the change in the decay function of the FRET donor on interaction with an acceptor. FLIM‐based FRET measurement does not have to cope with problems like donor bleedthrough or directly excited acceptor fluorescence. This relaxes the requirements to the absorption and emission spectra of the donors and acceptors used. Moreover, FLIM‐FRET measurements are able to distinguish interacting and noninteracting fractions of the donor, and thus obtain independent information about distances and interacting and noninteracting protein fractions. This is information not accessible by steady‐state FRET techniques. Autofluorescence FLIM exploits changes in the decay parameters of endogenous fluorophores with the metabolic state of the cells or the tissue. By resolving changes in the binding, conformation, and composition of biologically relevant compounds FLIM delivers information not accessible by steady‐state fluorescence techniques.  相似文献   

7.
8.
Although single-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to image molecular processes using a wide range of excitation wavelengths, the captured emission of this technique is confined to the visible spectrum. Here, we explore the feasibility of utilizing near-infrared (NIR) fluorescent molecular probes with emission >700 nm for FLIM of live cells. The confocal microscope is equipped with a 785 nm laser diode, a red-enhanced photomultiplier tube, and a time-correlated single photon counting card. We demonstrate that our system reports the lifetime distributions of NIR fluorescent dyes, cypate and DTTCI, in cells. In cells labelled separately or jointly with these dyes, NIR FLIM successfully distinguishes their lifetimes, providing a method to sort different cell populations. In addition, lifetime distributions of cells co-incubated with these dyes allow estimate of the dyes' relative concentrations in complex cellular microenvironments. With the heightened interest in fluorescence lifetime-based small animal imaging using NIR fluorophores, this technique further serves as a bridge between in vitro spectroscopic characterization of new fluorophore lifetimes and in vivo tissue imaging.  相似文献   

9.
A whole-field time-domain fluorescence lifetime imaging (FLIM) microscope with the capability to perform optical sectioning is described. The excitation source is a mode-locked Ti:Sapphire laser that is regeneratively amplified and frequency doubled to 415 nm. Time-gated fluorescence intensity images at increasing delays after excitation are acquired using a gated microchannel plate image intensifier combined with an intensified CCD camera. By fitting a single or multiple exponential decay to each pixel in the field of view of the time-gated images, 2-D FLIM maps are obtained for each component of the fluorescence lifetime. This FLIM instrument was demonstrated to exhibit a temporal discrimination of better than 10 ps. It has been applied to chemically specific imaging, quantitative imaging of concentration ratios of mixed fluorophores and quantitative imaging of perturbations to fluorophore environment. Initially, standard fluorescent dyes were studied and then this FLIM microscope was applied to the imaging of biological tissue, successfully contrasting different tissues and different states of tissue using autofluorescence. To demonstrate the potential for real-world applications, the FLIM microscope has been configured using potentially compact, portable and low cost all-solid-state diode-pumped laser technology. Whole-field FLIM with optical sectioning (3D FLIM) has been realized using a structured illumination technique.  相似文献   

10.
Global analysis of fluorescence lifetime image microscopy (FLIM) data can be used to obtain an accurate fit of multi‐exponential fluorescence decays. In particular, it can be used to fit a bi‐exponential decay to single frequency FLIM data, which is not possible with conventional fitting techniques. Bi‐exponential fluorescence decay models can be used to analyse quantitatively single frequency FLIM data from samples that exhibit fluorescence resonance energy transfer (FRET). Global analysis algorithms simultaneously fit multiple measurements acquired under different experimental conditions to achieve higher accuracy. To demonstrate that bi‐exponential models can indeed be fitted to single frequency data, we derive an analytical solution for the special case of two measurements and use this solution to illustrate the properties of global analysis algorithms. We also derive a novel global analysis algorithm that is optimized for single frequency FLIM data, and demonstrate that it is superior to earlier algorithms in terms of computational requirements.  相似文献   

11.
Fluorescence correlation spectroscopy (FCS) is a very sensitive technique that can be used, e.g., for the measurement of low concentrations and for the investigation of transport of fluorescent molecules. Fluorescence lifetime imaging (FLIM) provides spatially resolved information about molecular fluorescence lifetimes reflecting the interactions of the molecules with their environment. We have applied simultaneous two-photon FCS and FLIM to probe the behavior of fluorescent molecules diffusing in submicrometer silicon oxide channels. Our measurements reveal differences in fluorescence lifetimes compared to bulk solution that result from the effects of confinement and the presence of interfaces. Confinement also affects diffusional characteristics of fluorophores as reflected in fluorescence autocorrelation functions. These possible consequences of both spatial confinement and the presence of interfaces between media with different refractive indices on the diffusion and fluorescence lifetime of molecules in nanostructures are discussed in general.  相似文献   

12.
Fluorescence lifetime imaging (FLIM) provides a complementary contrast mechanism to fluorescence intensity and ratio imaging in intact tissue. With FLIM the time-resolved decay in fluorescence intensity of (interacting) fluorophores can be quantified by means of time correlated single photon counting (TCSPC). Here we focus on fluorescence lifetime imaging in intact blood vessels. Requisites for imaging in intact tissue are good penetration depth and limited tissue damage. Therefore, in this pilot-study, we performed TCSPC-FLIM using two-photon laser scanning microscopy to determine, with sub-cellular resolution, the fluorescence lifetime of two fluorescent probes. First, we focused on the nucleic acid dye SYTO41 in the various compartments of cells in vitro and in situ in the wall of intact mouse carotid arteries. Second, it was assessed whether the interaction of the lectin WGA-FITC with the endothelial glycocalyx affects its fluorescence lifetime. Results showed comparable mono-exponential fluorescence lifetimes of SYTO41 in the nuclei of cells in vitro and in situ. The slightly shorter fluorescence lifetime observed in the cytoplasm allowed discrimination of the nuclei. SYTO41 displayed strong mitochondrial staining, as was verified by the mitochondrion-specific probe CMXRos. In addition, mitochondrial staining by SYTO41 was accompanied by a green shift in emission. In the mitochondrial region, SYTO41 showed a highly bi-exponential and relatively fast decay, with two distinct lifetime components. It is hypothesized that the fitted bi-exponential decay can either be contributed to (1) the mathematical approximation of the fluorescence intensity decay or (2) the presence of free and DNA-bound SYTO41 in the mitochondrial compartment, leading to two lifetime components. The fluorescence lifetime of WGA-FITC decreased by approximately 25% upon binding to the endothelial glycocalyx. From this study, we conclude that FLIM offers an additional contrast mechanism in imaging intact tissue and provides information on binding status between a probe and its ligand.  相似文献   

13.
The deconvolution of fluorescence lifetime imaging microscopy (FLIM) data that were processed with global analysis techniques is described. Global analysis of FLIM data enables the determination of relative numbers of molecules in different protein reaction states on a pixel-by-pixel basis in cells. The three-dimensional fluorescence distributions of each protein state can then be calculated and deconvolved. High-resolution maps of the relative concentrations of each state are then obtained from the deconvolved images. We applied these techniques to quantitatively image the phosphorylation state of ErbB1 receptors tagged with green fluorescent protein in MCF7 cells.  相似文献   

14.
Application of light‐emitting diodes (LEDs) in frequency‐domain fluorescence lifetime imaging microscopy (FLIM) has been limited by the trade‐off between modulation frequency and illumination intensity of LEDs, which affects the signal‐to‐noise ratio in fluorescence lifetime measurements. To increase modulation frequency without sacrificing output power of LEDs, we propose to use LEDs with multiple dice connected in series. The LED capacitance was reduced with series connection; therefore, the frequency response of multidie LED was significantly increased. LEDs in visible light, including blue, green, amber and red, were all applicable in FLIM. We also present a homogenizing optics design, so that multidie LEDs produced uniform illumination on the same focal spot. When the homogenizing optics was combined with multicolour emitters, it provides multiple colour selection in a compact and convenient design.  相似文献   

15.
Widefield frequency‐domain fluorescence lifetime imaging microscopy (FD‐FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Herein, we describe a practical implementation of multifrequency widefield FD‐FLIM using a pulsed supercontinuum laser and a direct digital synthesizer. In this instrument we use a pulse to modulate the image intensifier rather than the more conventional sine‐wave modulation. This allows parallel multifrequency FLIM measurement using the Fast Fourier Transform and the cross‐correlation technique, which permits precise and simultaneous isolation of individual frequencies. In addition, the pulse modulation at the cathode of image intensifier restores the loss of optical resolution caused by the defocusing effect when the cathode is sinusoidally modulated. Furthermore, in our implementation of this technique, data can be graphically analyzed by the phasor method while data are acquired, which allows easy fit‐free lifetime analysis of FLIM images. Here, our measurements of standard fluorescent samples and a Föster resonance energy transfer pair demonstrate that the widefield multifrequency FLIM system is a valuable and simple tool in fluorescence imaging studies. Microsc. Res. Tech. 76:282–289, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
A microscope set-up and numerical methods are described which enable the measurement and reconstruction of three-dimensional nanosecond fluorescence lifetime images in every voxel. The frequency domain fluorescence lifetime imaging microscope (FLIM) utilizes phase detection of high-frequency modulated light by homodyne mixing on a microchannel plate image intensifier. The output signal at the image intensifier's phosphor screen is integrated on a charge coupled device camera. A scanning stage is employed to obtain a series of phase-dependent intensity images at equally separated depths in a specimen. The Fourier transform of phase-dependent data gives three-dimensional (3D) images of the Fourier coefficients. These images are deblurred using an Iterative Constrained Tikhonov–Miller (ICTM) algorithm in conjunction with a measured point spread function. The 3D reconstruction of fluorescence lifetimes are calculated from the deblurred images of the Fourier coefficients. An improved spatial and temporal resolution of fluorescence lifetimes was obtained using this approach to the reconstruction of simulated 3D FLIM data. The technique was applied to restore 3D FLIM data of a live cell specimen expressing two green fluorescent protein fusion constructs having distinct fluorescence lifetimes which localized to separate cellular compartments.  相似文献   

17.
We present here the phasor approach to biosensor Förster resonance energy transfer (FRET) detection by fluorescence lifetime imaging microscopy (FLIM) and show that this method of data representation is robust towards biosensor design as well as the fluorescence artifacts inherent to the cellular environment. We demonstrate this property on a series of dual and single chain biosensors, which report the localization of Rac1 and RhoA activity, whilst performing concomitant ratiometric FRET analysis on the acquired FLIM data by the generalized polarization (GP) approach. We then evaluate and compare the ability of these two methods to quantitatively image biosensor FRET signal as a function of time and space. We find that with lifetime analysis in the phasor plot each molecular species is transformed into a two‐dimensional coordinate system where independent mixtures of fluorophores can be distinguished from changes in lifetime due to FRET. This enables the fractional contribution of the free and bound state of a dual chain biosensor or the low and high FRET species of a single chain biosensor to be quantified in each pixel of an image. The physical properties intrinsic to each biosensor design are also accurately characterized by the phasor analysis; thus, this method could be used to inform biosensor optimization at the developmental stage. We believe that as biosensors become more sophisticated and are multiplexed with other fluorescent molecular tools, biosensor FRET detection by the phasor approach to FLIM will not only become imperative to their use but also their advancement. Microsc. Res. Tech., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

18.
In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two‐photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy‐to‐operate platform capable to perform two‐photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The real-time uptake of serotonin, a neurotransmitter, by rat leukemia mast cell line RBL-2H3 and 5-hydroxytryptophan by Chinese hamster V79 cells has been studied by fluorescence lifetime imaging microscopy (FLIM), monitoring ultraviolet (340 nm) fluorescence induced by two-photon subpicosecond 630 nm excitation. Comparison with two-photon excitation with 590 nm photons or by three-photon excitation at 740 nm shows that the use of 630 nm excitation provides optimal signal intensity and lowered background from auto-fluorescence of other cellular components. In intact cells, we observe using FLIM three distinct fluorescence lifetimes of serotonin and 5-hydroxytryptophan according to location. The normal fluorescence lifetimes of both serotonin (3.8 ns) and 5-hydroxytryptophan (3.5 ns) in solution are reduced to approximately 2.5 ns immediately on uptake into the cell cytosol. The lifetime of internalized serotonin in RBL-2H3 cells is further reduced to approximately 2.0 ns when stored within secretory vesicles.  相似文献   

20.
The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM enabled discrimination of SYTO 9 labelled cells from background, but that the lifetime of SYTO 9 was shorter in cells on minerals than in pure culture under our conditions. Photosynthetic microorganisms were easily observed using both FLIM and confocal. Unlabelled, nonpigmented bacteria showed weak signals that were difficult to distinguish from background when minerals were present, though cellular autofluorescence consistent with NAD(P)H could be seen in pure cultures, and phasor analysis permitted detection on rocks. Gypsum and marble samples showed similar autofluorescence profiles, with little autofluorescence in the yellow-to-red range. Lifetime or time-gated imaging may prove a useful tool for environmental microbiology. LAY DESCRIPTION : The standard method of bacterial enumeration is to label the cells with a fluorescent dye and count them under high-power fluorescence microscopy. However, this can be difficult when the cells are embedded in soil and rock due to fluorescence from the surrounding minerals and dye binding to ambiguous features of the substrate. The use of fluorescence lifetime imaging (FLIM) can disambiguate these signals and allow for improved detection of bacteria in environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号