首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We examine the effect of temperature on the export of ribosomal precursor particles from nuclei isolated from Tetrahymena. A new phenomenon is observed. Temperature does affect not only the export rate, but also the maximal portion of particles exported. At 8 degrees C, for example, the export kinetics reveals a significantly lower saturation plateau which does not equilibrate with the higher plateau at 28 degrees C even after 3 h. This nonequilibration is not due to (i) a different physical quality of the exported particles, (ii) a degradation of the nuclear rRNA, (iii) a backward import of exported particles into nuclei, (iv) an irreversible inactivation of potentially transportable nuclear ribosomal ribonucleoprotein (rRNP) particles, or (v) a thermodynamic equilibrium between transportable rRNP particles associated with nuclei and those exported from nuclei. We conclude, therefore, that potentially transportable rRNP particles are somehow "locked" in nuclei at low temperature and temperature raising induces a "graded unlocking."  相似文献   

2.
The export of rRNP particles from nuclei isolated from Tetrahymena was investigated after preincubating the nuclei at different temperatures under nonpermissive export-conditions. We observed a new phenomenon: Temperature elevation from the sublethal cells' growth temperature, 8 degrees C, to the optimal temperature, 28 degrees C, lead to a gradual down-regulation in the maximal proportion of rRNP particles subsequently exported from nuclei at 28 degrees C. This thermal down-regulation is apparently not due to qualitative changes in the exported rRNP particles, a derangement in the gross nuclear organization, a degradation and/or nicking of the nuclear rRNA, a gross decomposition of the major nuclear proteins, a random cross-linking of nuclear components by disulfide bonds, or an elution of nuclear factors possibly required for rRNP export. Moreover, there is a corresponding thermal down-regulation in nuclear envelope-free nuclei. Our data indicate that nuclei possess a mechanism that regulates the number of potentially exportable rRNP particles at a level preceding the rRNP passage through the nuclear envelope.  相似文献   

3.
We have examined the effect of temperature on the rRNA transport from nuclei isolated from Tetrahymena after removal of both nuclear membranes and pore complexes by 1% Triton X-100. These nuclei export rRNA as precursor ribosomal ribonucleoprotein particles at both 28 degrees C and 8 degrees C which are qualitatively the same in terms of rRNA pattern, sedimentation coefficients and buoyant densities. At 8 degrees C, however, significantly fewer ribosomal ribonucleoprotein particles can be maximally exported than at 28 degrees C, though nuclei contain enough potentially transportable particles. These are increasingly released with increasing temperatures. Under conditions non-permissive for export, temperature elevation decreases the number of the potentially transportable ribosomal ribonucleoprotein particles in nuclei. Our data show: transportable ribosomal ribonucleoprotein particles inside nuclei are not 'free', but rather are subject to a complex temperature-sensitive retention: this retention is gradually diminished under export conditions and augmented under non-permissive export conditions with increasing temperatures. These retention mechanisms operate at an intranuclear level preceding the ribosomal ribonucleoprotein passage through the nuclear envelope pore complexes, i.e., the nuclear envelope regulates neither the number of potentially transportable ribosomal ribonucleoprotein particles in nuclei nor the number of those particles which can be maximally exported from nuclei at a given temperature. We suggest that these retention mechanisms involve temperature-sensitive domains of the nuclear matrix.  相似文献   

4.
To study the biochemistry of ribonucleoprotein export from the nucleus, we characterized an in vivo assay in which the cytoplasmic appearance of radiolabeled ribosomal subunits was monitored after their microinjection into Xenopus oocyte nuclei. Denaturing gel electrophoresis and sucrose density gradient sedimentation demonstrated that injected subunits were transported intact. Consistent with the usual subcellular distribution of ribosomes, transport was unidirectional, as subunits injected into the cytoplasm did not enter the nucleus. Transport displayed properties characteristic of a facilitated, energy-dependent process; the rate of export was saturable and transport was completely inhibited either by lowering the temperature or by depleting nuclei of ATP; the effect of lowered temperature was completely reversible. Transport of injected subunits was likely a process associated with the nuclear pore complex, since export was also inhibited by prior or simultaneous injection of wheat germ agglutinin, a lectin known to inhibit active nuclear transport by binding to N-acetyl glucosamine-containing glycoproteins present in the NPC (Hart, G. W., R. S. Haltiwanger, G. D. Holt, and W. G. Kelly. 1989. Annu. Rev. Biochem. 58:841-874). Although GlcNAc modified proteins exist on both the nuclear and cytoplasmic sides of the nuclear pore complex, ribosomal subunit export was inhibited only when wheat germ agglutinin was injected into the nucleus. Finally, we found that ribosomal subunits from yeast and Escherichia coli were efficiently exported from Xenopus oocyte nuclei, suggesting that export of some RNP complexes may be directed by a collective biochemical property rather than by specific macromolecular primary sequences or structures.  相似文献   

5.
The influenza virus genome replicates and forms a viral ribonucleoprotein complex (vRNP) with nucleoprotein (NP) and RNA polymerases in the nuclei of host cells. vRNP is then exported into the cytoplasm for viral morphogenesis at the cell membrane. Matrix protein 1 (M1) and nonstructural protein 2/nuclear export protein (NS2/NEP) work in the nuclear export of vRNP by associating with it. It was previously reported that influenza virus production was inhibited in Madin-Darby canine kidney (MDCK) cells cultured at 41 degrees C because nuclear export of vRNP was blocked by the dissociation of M1 from vRNP (A. Sakaguchi, E. Hirayama, A. Hiraki, Y. Ishida, and J. Kim, Virology 306:244-253, 2003). Previous data also suggested that a certain protein(s) synthesized only at 41 degrees C inhibited the association of M1 with vRNP. The potential of heat shock protein 70 (HSP70) as a candidate obstructive protein was investigated. Induction of HSP70 by prostaglandin A1 (PGA1) at 37 degrees C caused the suppression of virus production. The nuclear export of viral proteins was inhibited by PGA1, and M1 was not associated with vRNP, indicating that HSP70 prevents M1 from binding to vRNP. An immunoprecipitation assay showed that HSP70 was bound to vRNP, suggesting that the interaction of HSP70 with vRNP is the reason for the dissociation of M1. Moreover, NS2 accumulated in the nucleoli of host cells cultured at 41 degrees C, showing that the export of NS2 was also disturbed at 41 degrees C. However, NS2 was exported normally from the nucleus, irrespective of PGA1 treatment at 37 degrees C, suggesting that HSP70 does not influence NS2.  相似文献   

6.
The complex comprising 5S ribosomal RNA and the ribosomal protein YL3 (5S rRNP) was isolated from yeast (Saccharomyces cerevisiae), and positively contrasted preparations were imaged by transmission electron microscopy. The overall dimensions of the 5S rRNP complex in the micrographs were 10 nm by 6 min. Three predominant projections were selected from several hundred putative particles for digitisation and computer averaging to yield two-dimensional constructions with reproducible spatial resolutions exceeding 2 run. The enhanced projection images were compatible with structural models of this complex based on biochemical studies.  相似文献   

7.
Growth substances were measured in xylem exudate from the stemstumps of detopped maize (Zea mays L. cv. Inra 200), whose rootshad been grown in culture solution at either 8, 13, 18, 23,28, or 33 ?C, between 30 and 47 d after sowing. After extractionof the exudate and gel chromatography, bioassay was used todetect three cytokinin, four gibberellin, and four growth-inhibitorfractions. It was found that the export of total cytokinin andgibberellin was greatest at a root temperature of 28 ?C, whileinhibitor export was lowest at 33 ?C, the root temperature thatwas optimal for shoot extension growth. As the root temperaturewas lowered to 8 ?C, shoot growth became progressively morerestricted, but while there was a concomitant decline in cytokininand gibberellin export, there was an increase in the exportof growth inhibitors. It is suggested that poor maize shootgrowth during prolonged low root-temperature treatments, suchas at 8 and 13 ?C, may be related to an altered balance betweenthe growth promoters and inhibitors that are exported to theshoot from the roots.  相似文献   

8.
The ribonucleoprotein particles released from isolated nuclei of regenerating rat liver in two in vitro systems were studied and the following results were obtained. 1. When the isolated nuclei of regenerating rat liver labeled in vivo with [14C] orotic acid were incubated in medium containing ATP and an energy-regenerating system (medium I) release of labeled 40-S particles was observed. Analysis of these 40-S particles showed that they contained heterogeneous RNA but no 18 S or 28 S ribosomal RNAs and their buoyant density in CsCl was 1.42-1.45 g/cm3, suggesting that they were nuclear informosome-like particles released during incubation. 2. When the same nuclei were incubated in the same medium fortified with dialyzed cytosol, spermidine and yeast RNA (medium II), release of labeled 60-S and 40-S particles was observed. Using CsCl buoyant density gradient centrifugation, two components were found in the labeled ribonucleoprotein particles released from nuclei in this medium. The labeled 60-S particles were found to contain 28-S RNA as the main component and their buoyant density in CsCl was 1.61 g/cm3, suggesting that they were labeled large ribosomal subunits. The labeled 40-S particles contained both 18 S RNA and heterogeneous RNA and they formed two discrete bands in CsCl, at 1.40 and 1.56 g/cm3, suggesting that they contained small ribosomal subunits and nuclear informosome-like particles. 3. These results clearly indicate that addition of dialyzed cytosol, spermidine and low molecular yeast RNA to medium I causes the release of ribosomal subunits or their precursors from isolated nuclei in the in vitro system.  相似文献   

9.
The DEAD-box RNA-helicase Dbp5/Rat8 is known for its function in nuclear mRNA export, where it displaces the export receptor Mex67 from the mRNA at the cytoplasmic side of the nuclear pore complex (NPC). Here we show that Dbp5 is also required for the nuclear export of both pre-ribosomal subunits. Yeast temperature-sensitive dbp5 mutants accumulate both ribosomal particles in their nuclei. Furthermore, Dbp5 genetically and physically interacts with known ribosomal transport factors such as Nmd3. Similar to mRNA export we show that also for ribosomal transport Dbp5 is required at the cytoplasmic side of the NPC. However, unlike its role in mRNA export, Dbp5 does not seem to undergo its ATPase cycle for this function, as ATPase-deficient dbp5 mutants that selectively inhibit mRNA export do not affect ribosomal transport. Furthermore, mutants of GLE1, the ATPase stimulating factor of Dbp5, show no major ribosomal export defects. Consequently, while Dbp5 uses its ATPase cycle to displace the export receptor Mex67 from the translocated mRNAs, Mex67 remains bound to ribosomal subunits upon transit to the cytoplasm, where it is detectable on translating ribosomes. Therefore, we propose a model, in which Dbp5 supports ribosomal transport by capturing ribosomal subunits upon their cytoplasmic appearance at the NPC, possibly by binding export factors such as Mex67. Thus, our findings reveal that although different ribonucleoparticles, mRNAs and pre-ribosomal subunits, use shared export factors, they utilize different transport mechanisms.  相似文献   

10.
60S and 40S ribosomal subunits are assembled in the nucleolus and exported from the nucleus to the cytoplasm independently of each other. We show that in vertebrate cells, transport of both subunits requires the export receptor CRM1 and Ran.GTP. Export of 60S subunits is coupled with that of the nucleo- cytoplasmic shuttling protein NMD3. Human NMD3 (hNMD3) contains a CRM-1-dependent leucine-rich nuclear export signal (NES) and a complex, dispersed nuclear localization signal (NLS), the basic region of which is also required for nucleolar accumulation. When present in Xenopus oocytes, both wild-type and export-defective mutant hNMD3 proteins bind to newly made nuclear 60S pre-export particles at a late step of subunit maturation. The export-defective hNMD3, but not the wild-type protein, inhibits export of 60S subunits from oocyte nuclei. These results indicate that the NES mutant protein competes with endogenous wild-type frog NMD3 for binding to nascent 60S subunits, thereby preventing their export. We propose that NMD3 acts as an adaptor for CRM1-Ran.GTP-mediated 60S subunit export, by a mechanism that is conserved from vertebrates to yeast.  相似文献   

11.
The processing of ribosomal RNA has been studied in a temperature sensitive mutant of the Syrian hamster cell line BHK 21. At 39 degrees C, these cells are unable to synthesize 28S RNA, and 60S ribosomal subunits, while 18S RNA, and 40S subunits are produced at both temperatures. At 39 degrees C the 45S RNA precursor is transcribed and processed as in wild type cells. The processing of the RNA precursors becomes defective after the cleavage of the 41S RNA, and the separation of the 18S and 28S RNAs sequences in two different RNA molecules. The 36S RNA precursor, which is always present in very small quantity in the nucleoli of wild type cells and of the mutant at 33 degrees C, is found in very large amounts in the mutant at 39 degrees C. The 36S RNA can be, however, slowly processed to 32S RNA. The 32S RNA cannot be processed at 39 degrees C, and it is degraded soon after its formation. Only a small proportion accumulates in the nucleoli. The 32S RNA synthesized at 39 degrees C cannot be processed to 28S RNA upon shift to the permissive temperature, even when the processing of the newly synthesized rRNA has returned to normal. The data suggest that the 36S and 32S RNAs are contained in aberrant ribonucleoprotein particles, leading to a defective processing of the particles as a whole.  相似文献   

12.
13.
14.
15.
Escherichia coli strain 15--28 is a mutant that accumulates ribonucleoprotein ('47 S') particles during exponential growth. These particles contain mature 23 S rRNA, but lack three of the proteins of the larger ribosomal subunit, to which they are a precursor. In organisms growing at 20 degrees C, assembly of 47 S particles involves three intermediates that contain precursor 23 S rRNA, one of which has the same sedimentation properties as 47 S particles. Assembly of 50 S ribosomal subunits in the parent strain is 'normal'. There are three intermediates; each contains precursor 23 S rRNA, and one cannot be distinguished from completed subunits by sedimentation. Synthesis of 30 S ribosomal subunits in parent and mutant strains is qualitatively similar, but quantitatively different. When growth is at 37 degrees C, assembly in the mutant alters. There are now two sequential precursors to 47 S particles. Both contain precursor 23 S rRNA; one has the same sedimentation coefficient as 47 S particles. In some respects, synthesis in the mutant proceeds as though 47 S particles, rather than 50 S ribosomal subunits, are the end-product of assembly.  相似文献   

16.
17.
To investigate the accessibility of interphase nuclei for nuclear body-sized particles, we analyzed in cultured cells from human origin by correlative fluorescence and electron microscopy (EM) the bundle-formation of Xenopus-vimentin targeted to the nucleus via a nuclear localization signal (NLS). Moreover, we investigated the spatial relationship of speckles, Cajal bodies, and crystalline particles formed by Mx1 fused to yellow fluorescent protein (YFP), with respect to these bundle arrays. At 37 degrees C, the nucleus-targeted, temperature-sensitive Xenopus vimentin was deposited in focal accumulations. Upon shift to 28 degrees C, polymerization was induced and filament arrays became visible. Within 2 h after temperature shift, arrays were found to be composed of filaments loosely embedded in the nucleoplasm. The filaments were restricted to limited areas of the nucleus between focal accumulations. Upon incubation at 28 degrees C for several hours, NLS vimentin filaments formed bundles looping throughout the nuclei. Speckles and Cajal bodies frequently localized in direct neighborhood to vimentin bundles. Similarly, small crystalline particles formed by YFP-tagged Mx1 also located next to vimentin bundles. Taking into account that nuclear targeted vimentin locates in the interchromosomal domain (ICD), we conclude that nuclear body-sized particles share a common nuclear space which is controlled by higher order chromatin organization.  相似文献   

18.
The effects of temperature on protein synthesis by Escherichia coli, a mesophile, and Pseudomonas fluorescens, a psychotroph, were investigated by using whole-cell and cell extract preparations. After shifts to 5 degrees C, protein was synthesized at a slowly decreasing rate for 1 h by both organisms, after which P. fluorescens synthesized protein at a new rate corresponding to its 5 degrees growth rate, in contrast to E. coli which did not synthesize protein at a measurable rate. In vitro protein-synthesizing systems using MS-2 RNA, endogenous mRNA, and purified polysomes were utilized to investigate initiation of translation at 5 degrees C. In these systems, P. fluorescens cell extracts synthesized protein at linear rates for up to 2 h at 5 degrees C, whereas E. coli cell extracts synthesized protein for only 25 min at 5 degrees C. The rates of polypeptide elongation, as tested by the incorporation of phenylalanine into polyphenylalanine by cell extract protein-synthesizing systems from both organisms, were identical over the range of 25 to 0 degrees C. The polysome profiles of E. coli whole cells shifted from 37 to 5 degrees C showed accumulation of 70S ribosomal particles and ribosomal subunits at the expense of polysomes. Similar experiements done with P. fluorescens resulted in polysome reformation at 5 degrees C. In vitro experiments demonstrated that the 70S ribosomal particles, which accumulated in E. coli at 5 degrees C, were capable of synthesizing protein in vitro in the absence of added mRNA. These in vivo and in vitro results suggest that incubation of E. coli at subminimal temperatures results in a block in initiation of translation causing polysomal runoff and the accumulation of 70S particles, some of which are 70S monosomes.  相似文献   

19.
To define additional components of the export machinery of Escherichia coli, I have isolated extragenic suppressors of a mutant [secA(Ts)] that is temperature sensitive for growth and secretion at 37 degrees C. Suppressors that restored growth at 37 degrees C, but that rendered the cell cold sensitive for growth at 28 degrees C, were obtained. The suppressor mutations fall into at least seven loci, two of which (prlA and secC) have been previously implicated in protein secretion. The five remaining loci (ssaD, ssaE, ssaF, ssaG, and ssaH) have been mapped by P1 transduction and appear to define new genes in E. coli. All of the suppressor mutations allow both enhanced growth and protein secretion of the secA(Ts) mutant at 37 degrees C, but not 42 degrees C, indicating a continued requirement for SecA protein. Strains carrying solely the cold-sensitive mutations show reduced levels of certain periplasmic proteins when grown at low temperatures. In at least one case, that of maltose-binding protein, this defect is at the level of synthesis of the protein. Since mutants in any of seven genes as well as secA amber mutants halt or reduce the synthesis of an exported protein, it appears that E. coli may possess a general and complex mechanism for coupling protein synthesis and secretion.  相似文献   

20.
To identify components involved in the nuclear export of ribosomes in yeast, we developed an in vivo assay exploiting a green fluorescent protein (GFP)-tagged version of ribosomal protein L25. After its import into the nucleolus, L25-GFP assembles with 60S ribosomal subunits that are subsequently exported into the cytoplasm. In wild-type cells, GFP-labeled ribosomes are only detected by fluorescence in the cytoplasm. However, thermosensitive rna1-1 (Ran-GAP), prp20-1 (Ran-GEF), and nucleoporin nup49 and nsp1 mutants are impaired in ribosomal export as revealed by nuclear accumulation of L25-GFP. Furthermore, overexpression of dominant-negative RanGTP (Gsp1-G21V) and the tRNA exportin Los1p inhibits ribosomal export. The pattern of subnuclear accumulation of L25-GFP observed in different mutants is not identical, suggesting that transport can be blocked at different steps. Thus, nuclear export of ribosomes requires the nuclear/cytoplasmic Ran-cycle and distinct nucleoporins. This assay can be used to identify soluble transport factors required for nuclear exit of ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号