首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Five minor and trace elements, known to be chemically stable during alteration and metamorphism, have been combined in a set of binary diagrams that distinguish fresh tholeiites from alkali basalts. Of the five elements: Ti, P, Zr, Y, Nb, only P shows slight mobility during metamorphism, which is not sufficient to alter greatly the point distribution on the binary diagrams. Using these stable elements altered basaltic rocks: greenstones, spilites and amphibolites may be distinguished in the same way as fresh basalts, and their original magma may be identified as tholeiitic or alkaline basalt. All five elements are readily and rapidly determined, using XRF, thus this method may be applied as a rapid, easy way of discriminating the magma types of altered basaltic rocks. Using this method it can be demonstrated that alkali basalt magma was produced in minor quantities in the Precambrian.  相似文献   

2.
The wide variety of basalt types, tholeiitic to basanite, dredged from Loihi Seamount have minor and trace element abundances that are characteristic of subaerial Hawaiian basalts, thereby confirming that Loihi Seamount is a manifestation of the Hawaiian “hot spot”. Within the Loihi sample suite there are well-defined positive correlations among abundances of highly incompatible elements (P, K, Rb, Ba, Nb, light REE and Ta) and moderately incompatible elements (Sr, Ti, Zr and Hf) and between MgO, Ni and Cr. However, within the Loihi suite abundance ratios of geochemically similar elements (Zr/Hf, Nb/Ta and La/Ce) vary by factors of 1.2–1.5 and abundance ratios of highly incompatible elements such as P/Ce, P/Th, K/Rb, Ba/Th and La/Nb vary by factors of 1.2–2.5. These abundance ratios are not readily changed by different degrees of fractionation and melting. Therefore, we conclude that these samples are not genetically related by different degrees of melting of a compositionally homogeneous source.On the basis of K/P, K/Ti, P/Ce, Zr/Nb, Th/P and La/Sm abundance ratios, the twelve samples studied in detail can be divided into six geochemical groups. Samples within each group are similar in 87Sr/86Sr [1], and intra-group compositional variations may reflect low-pressure fractionation and different degrees of melting. In addition, crossing chondrite-normalized REE patterns within the alkalic basalt groups reflect equilibration of the magmas with garnet. In ratio-ratio plots involving abundance ratios of highly incompatible elements, e.g., La/P, Nb/P, K/P, Rb/P, Ba/P and Th/P, the geochemical groups define linear arrays suggestive of mixing. However, these data combined with the isotopic data are not consistent with two-component mixing.  相似文献   

3.
Analyses for Ti, Zr, Y, Nb and Sr in over 200 basaltic rocks from different tectonic settings have been used to construct diagrams in which these settings can usually be identified. Basalts erupted within plates (ocean island and continental basalts) can be identified using a Ti-Zr-Y diagram, ocean-floor basalts, and low-potassium tholeiites and calc-alkali basalts from island arcs can be identified using a Ti-Zr diagram (for altered samples) and a Ti-Zr-Sr diagram (for fresh samples). Y/Nb is suggested as a parameter for indicating whether a basalt is of tholeiitic or alkalic nature. Analyses of dykes and pillow lavas from the Troodos Massif of Cyprus are plotted on these diagrams and appear to the tholeiitic ocean-floor rocks.  相似文献   

4.
Major and trace element (Rb, Sr, Ba, Zr, Y, Nb, Ni, Co, V, Cr) data are presented for 11 spinifex-textured peridotites (STP) and a number of high-magnesian and low-magnesian tholeiitic basalts. The STP, representing high-magnesian liquids, come from the Yilgarn Block of Western Australia, Munro Township in the Abitibi Belt of Canada and one sample from the Barberton area of South Africa. All of the basaltic samples come from the Yilgarn Block.The STP and high-magnesian rocks are considered to belong to the komatiite suite (1, 2) despite their low CaO/Al2O3 ratios. It is argued that the high values (about 1.5) reported for this ratio from the Barberton area can be explained by a combination of factors, viz. garnet separation, Al loss or Ca addition during metamorphism. The processes can be evaluated using CaO/TiO2, Al2O3/TiO2 ratios, the REE group and trace elements (e.g. Y, Sc). It would appear that most STP from other Archaean belts do not have abnormal CaO/Al2O3 ratios.The STP display close to chondritic ratios for Ti/Zr, Zr/Nb, Zr/Y, and TiO2/Al2O3 and are considered to represent liquids produced by large amounts of partial melting of the Archaean mantle. The data suggest that virtually all phases other than olivine were removed by melting during the production of STP liquids. In the STP, Ti/V, Ti/P ratios are non-chondritic, suggesting original depletion and/or incorporation into the core.For lower levels of partial melting, including mid-ocean ridge basalts (MORB) non-chondritic ratios are exhibited by Zr/Y, TiO2/Al2O3, TiO2/CaO, suggesting controlling phases in the residue for Y, Ca, Al. It is apparent that for STP, Cr is not being controlled, indicating the absence of chromite in the residual. However, at about 15% MgO the data suggest that chromite becomes a residual phase.The transition metals, with the exception of Mn, have higher abundances in Archaean basaltic rocks than in MORB. This is interpreted as being mainly due to more extensive partial melting of the mantle in the Archaean, as a result of higher temperatures.It is suggested that the generation of STP liquids with about 32% MgO is due to upwelling mantle diapirs which probably originated at depths greater than 400 km and at temperatures in excess of 1900°C.Modern equivalents to Archaean greenstone sequences are lacking. The closest tectonic analogue would be the development of oceanic crust within a rifted continental block.  相似文献   

5.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

6.
In the Paleozoic basalts of Nova Scotia (Canada) metamorphosed to a greenschist facies grade, U and Th are closely associated with immobile elements (e.g. Zr and Nb). The coherence of these elements with K, typical of igneous rocks is, however, absent, U and Th are apparently not affected by greenschist facies metamorphism as are alkali and alkali earth elements and their variation thus reflects primary magmatic processes. It seems that during the early stages of metamorphism, U and Th were retained together with several other incompatible elements (Zr, Nb, La and Ce) in stable secondary phases or alternatively these elements may be held in primary accessory minerals such as zircon and apatite.  相似文献   

7.
The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.  相似文献   

8.
广东南山花岗岩体位于陂头复式岩体西端,锆石的SHRIMP U-Pb年龄为158.1±1.8Ma,是燕山早期岩浆活动的产物。岩石化学特征显示岩体以高硅、富碱、贫Ca和Mg以及高TFeO/MgO、低CaO/Na2O为特征。其K2O/Na2O〉1,A/NK=7.8~11.92,A/CNK=1.33~1.68,属过铝质碱性岩石。在稀土和微量元素组成上,岩石富含稀土元素(除明显的负Eu异常,δEu=0.09~0.16)以及Zr、Y、Th、U、Nb等高场强元素,贫Ba、Sr、Ti等,高10000x Ga/Al(比值大于2.6)。在Zr、Nb、Ce、Y对10000×Ga/Al以及TFeO/MgO-SiO2等A型花岗岩多种判别图上,投影点主要落在A型花岗岩区,而与高分异的I、S型花岗岩明显不同。这些特征均指示,南山岩体具有铝质A型花岗岩的特点。通过Y-Nb-3Ga和Y-Nb-Ce构造环境判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。本文在此研究基础上,认为南山花岗质岩浆可能形成于相对挤压的中侏罗世。而在晚侏罗世早期相对拉张的作用下,岩石圈减薄,软流圈地幔上涌,地壳的泥质岩和少量砂质岩受到幔源流体富集后发生部分熔融后上侵形成铝质A型花岗岩,且有较强的结晶分异作用。  相似文献   

9.
There exists an E-W trending Middle Jurassic volcanic zone in southern China. The Fankeng basalts in the Yongding basin of Fujian Province are considered to be a typical example. The Fankeng basalts have TiO2 contents in the range of 1.92%-3.21%. They are classified as high-Ti basalts. They also have higher total Fe (averaging FeO* = 11.09%). The Middle Jurassic Fankeng basalts from southwestern Fujian have obvious distinctive lithogeochemical features from early Cre- taceous basalts from southeastern coast of China. They have higher HFSE, such as Th, Nb, Ta, Zr and Ti. Their element ratios related with HFSE, such as Zr/Ba, La/Nb, La/Ta ,Zr/Y, Ti/Y, Ba/Nb, K/Ti and Rb/Zr are similar to those of OIB. The most samples have ε Nd(T) of-0.70-0.24, which are near chondrite. Some samples have higher ε Nd(T) of 1.87-3.55.Therefore, these basaltic magmas might be derived from depleted asthenospheric mantle. The lithogeochemical characteristics of the Fankeng basalts may be caused by interaction between asthenosphere and lithosphere at the time. The (Early-) Middle Jurassic basalts and gabbros from southeastern Hunan, southern Jiangxi and northern Guangdong provinces show similar geochemical features to those of the Fankeng basalts from the Yongding of Fujian. Occurrence of these OIB-type basalts in the area may be regarded as the petrological mark of upwelling of asthenosphere at the time. Upwelling of asthenosphere has led to tectonic extension and the formation of rifted basin in the area.  相似文献   

10.
The syncollisional mafic-ultramafic intrusions in the North Dabie terrane are characterized by enriched LREE, Rb, Ba, and depletion of high field strength elements, such as Nb, Zr, Ti. The high Ti/& and Ti/Y ratios of their parent magma suggest that crust contamination of magma is not important to the above trace elements characters. They mainly reflect the features of their mantle source which has been modified by metasomatism in subduction environment.  相似文献   

11.

The trachyte and basaltic trachyte and intruded granite-porphyry of Gazacun formation of Wuyu Group in central Tibet are Neogene shoshonitic rocks. They are rich in LREE, with a weak to significant Eu negative anomalies. The enriched Rb, Th, U, K, negative HFS elements Nb, Ta, Ti and P, and Sr, Nd and Pb isotope geochemistry suggest that the volcanic rocks of Wuyu Group originated from the partial melting of lower crust of the Gangdese belt, with the involvement of the Tethyan oceanic crust. It implies that the north-subducted Tethys ocean crust have arrived to the lower crust of Gangdese belt and recycled in the Neogene magmatism.

  相似文献   

12.
Zircon is resistant to alteration over a wide range of geological environments, and isotopic ratios within the mineral provide constraints on ages and their parental magmas. Trace element compositions in zircon are also expected to reflect those of their parent magmas, and have a potential as essential indicators for their host rocks. Because most detrital zircons that accumulate at river mouths are derived primarily from granitoids, the classification of zircon within granitoids is potentially meaningful. This study employs the conventional classification scheme of granites (I‐, S‐, M‐, and A‐types). To clarify geochemical characteristics of zircons in A‐type granites, trace element compositions of zircons extracted from the A‐type Ashizuri granitoids were examined. Zircons from the Ashizuri granitoids commonly show enrichments of heavy rare earth elements and positive Ce anomalies, indicating that these zircons were igneous in origin. In addition, zircons in these A‐type granites are characterized by enrichments of Nb, Y, Ta, Th, and U and strong negative Eu anomalies, which exhibit good positive correlations with those in their whole rocks. This fact indicates that these signatures in zircons reflect well those in their parental bodies and are useful in identifying zircons derived from A‐type granite. Based on compilations of available data, zircons from A‐type granites can be clearly discriminated from other‐types of granites within Nb/Sr–Eu anomaly, U/Sr–Eu anomaly, Nb/Sr–U/Sr, and Nb/Sr–Ta/Sr cross‐plots. All indices used in these diagrams were selected based on the geochemical features of both zircon and whole rock of A‐type granites. Application of these discrimination diagrams to detrital zircons will likely provide further insights. For example, some Hadean detrital zircons plot in similar fields to A‐type granites, implying the existence of A‐type magmatism in the Earth's earliest history.  相似文献   

13.
Mesozoic volcanic rocks are widespread throughout the Great Xing'an Range of northeastern China. However, there has been limited investigation into the age and petrogenesis of the Mesozoic volcanics in the eastern Great Xing'an Range. According to our research, the volcanic rocks of the Dayangshu Basin, eastern Great Xing'an Range are composed mainly of trachybasalt, basaltic andesite, and basaltic trachyandesite, with minor intermediate–basic pyroclastic rocks. In this study, the geochemistry and geochronology of the Mesozoic volcanic rocks are presented in order to discuss the petrogenesis and tectonic setting of the Ganhe Formation in the Dayangshu Basin. Zircon U–Pb dating by laser ablation inductively coupled plasma–mass spectrometry indicates that the Mesozoic lavas formed during the late Early Cretaceous (114.3–108.8 Ma). This suite of rocks exhibits a range of geochemical signatures indicating subduction‐related genesis, including: (i) calc‐alkaline to high‐K calc‐alkaline major element compositions; (ii) enrichment of large ion lithophile elements (e.g. Rb, Ba, K) and light rare earth elements (LREEs/HREEs =7.33–9.85); and (iii) weak depletion in high field strength elements (e.g. Nb, Ta, Ti). Furthermore, Sr–Nd–Pb isotopic data yield initial 87Sr/86Sr values of 0.70450–0.70463, positive εNd(t) values of +1.8 to +3.3, and a mantle‐derived lead isotope composition. Combined with the regional tectonic evolution, the results of this study suggest that the Ganhe Group lavas are derived from decompression melting of a metasomatized (enriched) lithospheric mantle, related to asthenospheric upwelling, which resulted from lithospheric mantle delamination and produced extension of the continental margin following the subduction of the Paleo‐Pacific Plate.  相似文献   

14.
Erciyes stratovolcano, culminating at 3917 m, is located in the Cappadocian region of central Anatolia. During its evolution, this Quaternary volcano produced pyroclastic deposits and lava flows. The great majority of these products are calc-alkaline in character and they constitute Kocdag and Erciyes sequences by repeated activities. Alkaline activity is mainly observed in the first stages of Kocdag and approximately first-middle stages of Erciyes sequences. Generally, Kocdag and Erciyes stages terminate by pyroclastic activities. The composition of lavas ranges from basalt to rhyolite (48.4–70.5 wt.% SiO2). Calc-alkaline rocks are represented mostly by andesites and dacites. Some compositional differences between alkaline basaltic, basaltic and andesitic rocks were found; while the composition of dacites remain unchanged. All these volcanics are generally enriched in LIL and HFS elements relative to the orogenic values except Rb, Ba, Nb depleted alkaline basalt. 87Sr/86Sr and 143Nd/144Nd isotopic composition of the volcanics range between 0.703344–0.703964, 0.512920–0.512780 for alkaline basalts and change between 0.704322–0.705088, 0.512731–0.512630 for alkaline basaltic rocks whereas calc-alkaline rocks have relatively high Sr and Nd isotopic ratios (0.703434–0.705468, 0.512942–0.512600). Low Rb, Ba, Nb content with high Zr/Nb, low Ba/Nb, La/Yb ratio and low Sr isotopic composition suggest an depleted source component, while high Ba, Rb, Nb content with high La/Yb, Ba/Nb, low Zr/Nb and low 87Sr/86Sr ratios indicate an OIB-like mantle source for the generation of Erciyes alkaline magma. These elemental and ratio variations also indicate that the different mantle sources have undergone different degree of partial melting episodes. The depletion in Ba, Rb, Nb content may be explained by the removal of these elements from the source by slab-derived fluids which were released from pre-collisional subduction, modified the asthenospheric mantle. The chemically different mantle sources interacted with crustal materials to produce calc-alkaline magma. The Ba/Nb increase of calc-alkaline samples indicates the increasing input of crustal components to Erciyes volcanics. Sr and Nd isotopic compositions and elevated LIL and HFS element content imply that calc-alkaline magma may be derived from mixing of an OIB-like mantle melts with a subduction-modified asthenospheric mantle and involvement of crustal materials in intraplate environments.  相似文献   

15.
New rare earth element (REE) data for Archaean basalts and spinifex-textured peridotites (STP) show a range of La/Sm ratios (chondrite-normalized) from 0.36 to 3.5, with the bulk of the data in the range 0.7–1.3. This supports the hypothesis, based on Sr isotope initial ratios, that the Archaean mantle was chemically heterogeneous. We suggest that the bulk mantle source for Archaean basaltic magmas was close to an undepleted earth material. An average chemical composition of the Archaean mantle is estimated using chemical regularities observed in Archaean STP and high-magnesian basalts. TiO2 and MgO data show an inverse correlation which intersects the MgO axis at about 50% MgO (Fo92). TiO2 abundance in the mantle source is measured on this plot by assigning anMgO= 38% for the mantle. Concentrations of other elements are also estimated and these data are then used to obtain a composition for the bulk earth. We suggest an earth model with about 1.35 times ordinary chondrite abundances of refractory lithophile elements and about 0.2 times carbonaceous type 1 chondrite abundances of moderately volatile elements (such as Na, Rb, K, Mn). P shows severe depletion in the model earth relative to carbonaceous chondrites, a feature either due to volatilization or core formation (preferred). Our data support the hypothesis of Ringwood that the source material for the earth is a carbonaceous chondrite-like material.The generation of mid-ocean ridge basalts (MORB) is examined in the light of the model earth composition and Al2O3/TiO2, CaO/TiO2 ratios. It is suggested that for primitive basalts, these values can be used to predict the residual phases in their source. Comparison of chemical characteristics of inferred sources for 2.7-b.y. Archaean basalts and modern “normal” MORB indicates that the MORB source is severely depleted in highly incompatible elements such as Cs, Ba, Rb, U, Th, K, La and Nb, but has comparable abundances of less incompatible elements such as Ti, Zr, Y, Yb. The cause of the depletion in the MORB source is examined in terms of crust formation and extraction of silica-undersaturated melts. The latter seems to be a more likely explanation, since the degree of enrichment of highly incompatible elements in the crust only accounts for up to 40% of their abundances in the bulk earth and cannot match the depletion pattern in normal MORB. A large volume of material, less depleted than the source for normal MORB must therefore exist in the mantle and can serve as the source for the ocean island basalts and “normal” MORB.Three different mantle evolution models are examined and each suggests that the mantle is stratified with respect to abundances of incompatible trace elements. We suggest that no satisfactory model is available to fully explain the spectrum of geochemical and geophysical data. In particular the Pb and Sr isotope data on oceanic basalts, the depletion patterns of MORB and the balance between lithophile abundances in the crust and mantle, are important geochemical constraints to mantle models. Further modelling of the mantle evolution will be dependent on firmer information on the role of subduction, mantle convection pattern, and basalt production through geologic time together with a better understanding of the nature of Archaean crustal genesis.  相似文献   

16.
New major and trace element data for 79 acid-intermediate charnockitic gneisses (the Tromøy gneisses) and 16 associated metabasites from the island of Tromøy show that this part of the 1200–900-m.y. Sveconorwegian zone is occupied by rocks of unusual composition. Overall values for K and Rb are the lowest yet reported for any granulites, and K/Rb ratios are very high. Cs and Th are also low and, abnormally for granulites, so are Ba, Sr and Zr. Ba/Sr ratios are similar to those in other suites, but K/Ba and K/Sr are higher. These features may partially be reflecting unusual pre-metamorphic lithologies, but it is considered more likely that they are largely the product of metamorphically induced depletion processes involving metasomatism. There is some indication that the Na2O/CaO and normative Ab/An ratios may also have been modified during metamorphism.Data for the presumed relatively immobile elements Cr, Co, Ni and V support an igneous origin for the Tromøy gneisses, but the presence of a paragneiss component cannot be ruled out. A characteristic of the gneisses is their high iron content, and spatial and temporal considerations point towards a genetic link with the iron-rich, intrusive rapakivi suites of Finland, Sweden and south Greenland. If the Tromøy gneisses do represent material of this type, it would seem to follow that potash fractionation has been extreme.  相似文献   

17.
Magma type and tectonic setting discrimination using immobile elements   总被引:1,自引:0,他引:1  
Five minor and trace elements have been variously combined to produce a set of binary diagrams in addition to total alkali-SiO2 diagrams, that discriminate between fresh tholeiitic and alkali basalts. These diagrams are TiO2-Zr, TiO2-Y/Nb, P2O5-Zr, TiO2-Zr/P2O5, and Nb/Y-Zr/P2O5. A clear discrimination between alkaline and tholeiitic basalts can be obtained, although no meaningful separation can be made between the broad groups of oceanic and continental basalts, of either magma type, on the diagrams. As these elements (Ti, P, Zr, Y and Nb) are generally considered immobile during alteration processes, it should be possible to distinguish the magma type of ancient basic volcanics that have been subjected to submarine weathering, spilitization and low-grade metamorphism.  相似文献   

18.
Volcanic rocks of the Sunda and Banda arcs range from tholeiitic through calcalkaline and shoshonitic to leucititic, the widest compositional span of mafic magmatism known from an active arc setting.Mafic rocks in our data set, which includes 315 new analyses of volcanic rocks from twelve Quaternary volcanoes, including Batu Tara in the previously geochemically unknown Flores-Lembata arc sector, are generally similar to those from other island arcs: most contain <1.3 wt. % TiO2 and 16–22 wt. % Al2O3, and have characteristically high K/Nb and La/Nb values. Abundances of P, Ba, Rb, Sr, La, Ce, Nd, Zr and Nb increase sympathetically with increasing K2O contents of mafic rocks but those of Na, Ti, Y and Sc vary little throughout the geochemical continuum from low-K tholeiitic to high-K leucititic rocks.Excluding Sumatra and Wetar, which possess mainly dacitic and rhyolitic volcanics, the Sunda-Banda arc is divisible into four geochemical arc sectors with boundaries that correlate with major changes in regional tectonic setting and geological history. From west to east, the West Java, Bali and Flores arc sectors each comprise volcanoes which become progressively more K-rich eastwards, culminating in the leucitite volcanoes Muriah, Soromundi and Sangenges, and Batu Tara, respectively. In the most easterly Banda sector, the volcanics vary from high- to low-K eastwards around the arc.Correlations between geochemistry and 87Sr/86Sr values show separate trends for each of the four arc sectors, believed to be the result of involvement of at least three geochemically and isotopically distinct components in the source regions of the arc magmatism.A dominant source component with a low K content and a low 87Sr/86Sr value, and common to all sectors, is probably peridotitic mantle. A second component, with low K content but high 87Sr/86Sr value, appears to be crustal material. This component is most apparent in the Banda sector, in keeping with that sector's tectonic setting close to Precambrian Australian continental crust, but it is also present to lesser extents in the West Java and Flores sectors.However, the most marked geochemical and isotopic variations shown by the arc volcanics are primarily due to the involvement of a third component, which is rich in K-group elements but has relatively low 87Sr/86Sr values. This component appears to be mantle-derived and is least overprinted by crustal material in the Bali sector volcanics where the Pb, Be, U-Th and O isotope characteristics of the rocks support the suggestion that their genesis has not involved incorporation of recently subducted, continent-derived sialic material.The high, regionally persistent, Th/U value (about 4.3) of the Sunda subarc mantle, obtained from U-Th isotopic data, suggests a close association could exist between the K-rich component and the southern hemisphere ‘DUPAL’ mantle isotopic anomaly.  相似文献   

19.
The Cenozoic basaltic province of the Vogelsberg area (central Germany) is mainly composed of intercalated olivine to quartz tholeiites and near-primary nephelinites to basanites. The inferred mantle source for the alkaline and tholeiitic rocks is asthenospheric metasomatized garnet peridotite containing some amphibole as the main hydrous phase. Trace element modelling indicates 2 to 3% partial melting for the alkaline rocks and 5 to 7% partial melting for the olivine tholeiites. Incompatible trace element abundances and ratios as well as Nd and Sr radiogenic isotope compositions lie between plume compositions and enriched mantle compositions and are similar to those measured in Ocean Island Basalts (OIB) and the Central European Volcanic Province elsewhere. The mafic olivine tholeiites have similar Ba/Nb, Ba/La and Nd–Sr isotope ratios to the alkaline rocks indicating derivation of both magma types from chemically comparable mantle sources. However, Zr/Nb ratios are slightly higher in olivine tholeiites than in basanites reflecting some fractionation of Zr relative to Nb during partial melting. Quartz tholeiites have higher Ba/Nb, Zr/Nb, La/Nb, but lower Ce/Pb ratios and lower Nd isotope compositions than the alkaline rocks which can be explained by interaction of the basaltic melt with lower (granulite facies) crustal material or partial melts thereof during stagnation within the lower crust. It appears most likely that upwelling of hot, asthenospheric material results in the generation of primitive alkaline rocks at the base of the lithosphere at depths of 75–90 km. Lithospheric extension together with minor plume activity and probably lower lithosphere erosion induced melting of shallower heterogenous upper mantle generating a spectrum of olivine tholeiitic melts. These olivine tholeiitic rocks evolved via crystal fractionation and probably limited contamination to quartz tholeiites.  相似文献   

20.
 This work presents the results of a microthermometric and EPMA-SIMS study of melt inclusions in phenocrysts of rocks of the shoshonitic eruptive complex of Vulcano (Aeolian Islands, Italy). Different primitive magmas related to two different evolutionary series, an older one (50–25 ka) and a younger one (15 ka to 1890 A.D.), were identified as melt inclusions in olivine Fo88–91 crystals. Both are characterized by high Ca/Al ratio and present very similar Rb/Sr, B/Be and patterns of trace elements, with Nb and Ti anomalies typical of a subduction zone. The two basalts present the same temperature of crystallization (1180±20  °C) and similar volatile abundances. The H2O, S and Cl contents are relatively high, whereas magmatic CO2 concentrations are very low, probably due to CO2 loss before low-pressure crystallization and entrapment of melt inclusions. The mineral chemistry of the basaltic assemblages and the high Ca/Al ratio of melt inclusions indicate an origin from a depleted, metasomatized clinopyroxene-rich peridotitic mantle. The younger primitive melt is characterized with respect to the older one by higher K2O and incompatible element abundances, by lower Zr/Nb and La/Nb, and by higher Ba/Rb and LREE enrichment. A different degree of partial melting of the same source can explain the chemical differences between the two magmas. However, some anomalies in Sr, Rb and K contents suggest either a slightly different source for the two magmas or differing extents of crustal contamination. Low-pressure degassing and cooling of the basaltic magmas produce shoshonitic liquids. The melt inclusions indicate evolutionary paths via fractional crystallization, leading to trachytic compositions during the older activity and to rhyolitic compositions during the recent one. The bulk-rock compositions record a more complex history than do the melt inclusions, due to the syneruptive mixing processes commonly affecting the magmas erupted at Vulcano. The composition and temperature data on melt inclusions suggest that in the older period of activity several shallow magmatic reservoirs existed; in the younger one a relatively homogeneous feeding system is active. The shallow magmatic reservoir feeding the recent eruptive activity probably has a vertical configuration, with basaltic magma in the deeper zones and differentiated magmas in shallower, low-volume, dike-like reservoirs. Received: 11 March 1998 / Accepted: 14 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号