首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
G. Buonanno   《Measurement》2000,27(4):277-285
Different solutions to the metering of natural gas consumption can be adopted according to whether the distribution is domestic or industrial. In the domestic field, almost all the flow meters used by natural gas distribution companies are conventional diaphragm meters, whereas greater flow rates justify metrologically better performing measurement systems. The requirement for new safety and remote-reading related functions and the availability of new technologies is now encouraging the use of static innovative flow meters. In the present study, after a short analysis of metering principles and of static ultrasonic flow meter characteristics, the authors report the results of the field tests carried out on two different types of static ultrasonic flow meter for 2 years.  相似文献   

2.
The most common method to predict the gas and liquid flow rates in a wet gas flow simultaneously is to use dual pressure drops (dual-DPs) from two or even one single DP meter. In this paper, the metering mechanism of applying dual-DPs were overviewed. To fully understand the response of DP meters to wet gas flows, the pressure drops of wet gas flow with ultra-low liquid loading through three typical DP meters were experimentally investigated, including an orifice plate meter, a cone meter and a Venturi meter. The equivalent diameter ratio is 0.45. The experimental fluids are air and tap water. The pressure is in the range of 0.1–0.3 MPa and the Lockhart-Martinelli parameter (XLM) is less than approximately 0.02. The results show that the upstream-throat pressure drop, the downstream-throat pressure drop and the permanent pressure loss of individual DP meters have unique response to liquid loading. The upstream-throat pressure drop of the orifice plate meter decreases at first and then increases as the liquid loading increases, while that of the cone meter and the Venturi meter increase monotonically. The non-monotonicity of the pressure drop for the orifice plate meter can be attributed to the flow modulation of trace liquid. The downstream-throat pressure drops of all the three test sections decrease at first and then increase. The reason is that the liquid presence in a gas flow increases the downstream friction and vortex dissipation. The permanent pressure loss of the orifice plate meter also shows non-monotonicity. To avoid non-monotonicity, the pressure loss ratio is introduced, which is defined as the ratio of the permanent pressure loss to the upstream-throat pressure drop. Results show that the pressure loss ratio of the Venturi meter has the highest sensitivity to the liquid loading.  相似文献   

3.
The application of wet gas flow meter at shale gas wellhead is of great significance to reduce the investment and operation cost of shale gas extraction. In this paper, the flow conditions at the wellhead of shale gas and the principles of the current wet gas flow meters are briefly analyzed. A wet gas flow meter was tested on the wet gas flow test facility, and its performance of flow rates evaluation is studied, which is helpful to optimize the wet gas metering process design of shale gas wellhead and to improve the wet gas metering technology. This study shows that the measurement principles of the current wet gas flow meters are feasible, however, the calibration by using the wet natural gas at working conditions can help to enhance the meter's measure performance.  相似文献   

4.
An in situ calibration method for small Coriolis meters used for high-pressure gas flow calorimetry is presented. The method has an accuracy better than 0.02%, at level one standard deviation. Two meters, both with a totalizer function, have been evaluated, and the total long-term accuracy of the best meter is ±0.11% at level one standard deviation.  相似文献   

5.
This paper deals with the differences between traditional and new technology gas meters, and focuses specifically on the calibration procedure and uncertainty evaluation of CTTMFs (Capillary Type Thermal Mass Flow Meter). In particular, measurements performed on a sample set of commercial CTTMFs for natural gas in domestic/residential (G4) applications allowed to evaluate the modifications to calibration procedures required by the new generation, digital, gas flow meters. Indeed, traditionally natural gas is metered by means of volumetric measurement techniques, while the modern, static gas flow meters (thermal and ultrasonic ones) are based on electronic flow sensors. This implies that the gas volume through the meter is measured by sampling the flow rate at selected time points and integrating the flow rate in time. The measurement time becomes therefore an important parameter, thus requiring a thorough rethinking of the calibration procedure. In order to analyse the effects of the various parameters, a series of ad-hoc calibrations were performed. Specifically, one set of calibrations was performed with constant totalized volume, while the other required a constant measurement time. In order to highlight the novelties that will have to be implemented in ordinary calibration procedures to get the best of the new technologies, the two procedures as performed on a sample set CTTMFs will be compared; the theoretical (generic) evaluation of the associated uncertainty will also be presented. Measurements were carried out at the test facility of INRIM, the Italian National Metrology Institute.  相似文献   

6.
燃气流量计是天然气贸易计量的重要仪器,而其健康状态的改变会造成计量偏差。为了减少燃气企业的经济损失,本文提出了一种基于多模态数据扩充、形态学特征学习和多尺度自适应加权形态学网络的燃气流量计健康状态评估方法。首先,采用基于Wasserstein距离和谱归一化的ACGAN算法进行数据扩充。其次,针对燃气流量计振动信号数据的复杂性和噪声影响,提出了一种基于平均帽变换的形态学方法提取信号的正负脉冲信息。最后,针对非平稳、变工况的工业条件,引入多尺度自适应加权形态学网络,采用具有不同结构元素尺度的多个分量来分别提取脉冲信息,并利用自适应加权融合来增强提供强脉冲分量的尺度。通过实验结果表明,所提出的方法对燃气流量计健康状态评估的准确度超过94%。该方法对实际燃气贸易计量有重要的应用价值。  相似文献   

7.
The thermal gas mass flow meter is an important meter used in industrial measurement. When the environmental temperature changes, the measured gas physical parameters change correspondingly and the thermal gas mass flow meter output signal is affected, causing large measurement error. The influence of gas temperature on the sheathed probe measurements is analyzed in this paper based on experiments and heat transfer theory using a three dimensional probe and gas heat transfer mathematical model based on the heat conduction equation. The probe heat transfer process is analyzed under convection heat transfer coupling conditions. The experimental data were analyzed and compared against the theoretical results, with a maximum average relative error of only 4.56%. The rationality of the theoretical method is thus verified.  相似文献   

8.
High pressure air flow standard facilities, including the pVTt facility, sonic nozzle facility and closed loop facility were built in NIM at the end of 2014. The high pressure closed loop gas flow facility was the first closed loop facility in China. The system has 4 sets of 100 mm diameter turbine meters for the reference meters with a flow range of (40–1300) m3/h and a pressure range of (190–2500) kPa. To avoid uncertainties introduced during installation, the reference meters were designed to be calibrated in situ using the sonic nozzle facility. The uncertainty in the pressure measurement was reduced by installing an absolute pressure transducer in the manifold upstream of the reference meters, with differential pressure transducers used to measure the pressure drops across the reference flow meter and the test flow meter. The relative expanded uncertainty for the test meter can reach 0.20% (k = 2) as verified by comparison the sonic nozzle facility and the closed loop facility measurements.  相似文献   

9.
Entrained gas has been regarded as disturbance to measurements based on Coriolis meters, since measurement accuracy can be degraded because of this disturbance. Recent research from Endress + Hauser has discovered that different types of gas bubbles, namely free bubbles and suspended bubbles, have various impact on the meter measurement performance. It is important to understand the error mechanism for different effects, namely bubble effect and resonator effect, which are introduced by different bubble types, and to take the corresponding measures to cope with the effects. It is also crucial to identify the bubble pattern in the measuring tube of a Coriolis meter to make a diagnosis and reduce the negative influence of the disturbance accordingly. For free bubbles that typically cause inhomogeneity of a medium, the fluctuation of the resonance frequency of the measuring tube in a Coriolis meter is directly correlated to the existence of this type of bubbles, since this medium under a flowing condition causes density fluctuation to the meter as gas density is typically much lower than that of a liquid. For homogenous suspended bubbles that lead to a significantly increased compressibility of a medium, the innovative Multi-Frequency Technology in Promass Q sensor offers the means to qualitatively detect the existence of this type of bubbles and quantitatively calculate the volume fraction of the gas phase, based on its ability to derive the speed of sound in a medium containing such bubbles. Identification of the type of bubbles helps not only for crediting the measurement reliability, but also for obtaining more detailed medium properties, and in turn a better process insight, with which a process optimization can be enabled to improve the quality of production.  相似文献   

10.
The generation methods of a gas concentration sinusoidal and step changes for dynamic properties assessment of the fast gas concentration meters are described. The need of such fast measurements occurs together with the rising scientists’ interest in contaminants and microorganisms dispersion in the air, especially during the tests of the risk of infection. While the laboratory tests are performed, the tracer gas instead of a infected air is used. Due to the high selectivity, good long-term stability and a wide measurement range, the infrared absorption method for measuring the gas concentration is used. The dynamic properties of this method are limited by the need of the exchange of the gas sample in the measuring chamber. Both constructed generators allow to obtain gas concentration changes with specified amplitude and frequency. The results of step and sinusoidal tests of selected CO2 concentration meter were compared and they showed a good agreement.  相似文献   

11.
Bernhard Menz   《Measurement》1997,22(3-4):123-128
Due to the complementary qualities of the principles of vortex frequency estimation and vortex time of flight estimation they are ideally suited for an effective sensor fusion within flow measurement. A flow meter which combines the results of the two individual systems in an intelligent manner was built and beside theoretical considerations the performance of the fused system is demonstrated by a variety of measurements. In comparison with conventional vortex meters which only use the vortex frequency to estimate the flow rate, the measuring range can be extended by a factor of 8–10 and the accuracy of the system as well as the robustness to disturbances like a second fluid phase or depositions on the bluff body are strongly increased.  相似文献   

12.
From their introduction, ultrasonic flow meters have received a rapid acceptance as being one of the favored measurement methods for high accuracy custody transfer applications in high-pressure gas transmission systems. There are many benefits when using ultrasonic technology; increased rangeability and capacity over conventional measurement technology with unparalleled accuracy are near the top of the list. But in many cases, even more important are the cost savings obtained due to the decrease in maintenance costs and savings in compressor fuel cost by the reduction of the pressure drop through the station. Key elements in the success of the ultrasonic technology are the manufacturing methods and procedures that result in tight tolerances in the geometry of the meter. Whereas the accuracy of the meter is mainly dependent on the quality of the geometry and accuracy of the time measurement, the stated performance of the meter can be guaranteed based on a dry calibration only; a practice identical to the widely accepted orifice measurement. The purpose of this paper is to focus on the influence of the manufacturing tolerances on the uncertainty of the measurement, the dry calibration procedure and the final comparison with the results obtained after wet calibrations.  相似文献   

13.
这里结合皮膜式煤气表的常用传动机构的特点和煤气计量技术的发展,提出一种适用于皮膜式煤气表的新型端面齿轮转阀传动机构,并详细介绍其设计方法。  相似文献   

14.
A series of tests are carried out to assess the effects of flow disturbance on a small dimension ultrasonic gas flowmeter. Flow disturbances generated by cone couplings, and single and double elbows are investigated. Measurements with a 100 D straight pipe upstream with a smooth connection to the meter body are used as a reference. Our measurements show that the symmetrical disturbance produced by a cone coupling at a 12 D distance from the transducer path does not impair the performance of the flowmeter. An asymmetrical disturbance, such as a single or a double elbow at the same distance, seems generally to give an underestimation of the flow velocity, resulting in reading errors of −1% or worse. Measurements with straight pipes of 10 D, 20 D, 40 D and 80 D between the disturbance and the flowmeter have also been made showing that 10 D can cause an overestimation of flow velocity. Increasing the length of the straight pipe generally decreases the error. More than 80 D straight pipe between the disturbance and the flowmeter is required to give a result within ±1% of reference conditions. The angle between the elbow plane and the transducer plane is changed from 0 to 315° in 45° steps. The meter error is plotted as a function of inlet angle, showing a clear relationship between these values.  相似文献   

15.
Differential pressure (DP) meters which utilise a cone as the system’s primary element are increasingly being used to measure wet natural gas flows (i.e. mixtures of natural gas, light hydrocarbon liquids and water). It is therefore important to understand this meter’s response to wet natural gas flows. Research into the wet gas response of the horizontally installed cone DP meter is discussed in this paper. Consideration is given to the significant influence of the liquid properties on wet gas flow patterns and the corresponding influence of the flow pattern on the cone DP meter’s liquid phase induced gas flow rate prediction error. A wet natural gas flow correlation for 4 in. 0.75 beta ratio cone DP meters with natural gas, hydrocarbon liquid and water flow has been developed from multiple data sets from three different wet gas flow test facilities. This corrects the liquid induced gas flow rate prediction error of a wet gas flow up to a Lockhart–Martinelli parameter of 0.3, for a known liquid flow rate of any hydrocarbon liquid/water ratio, to ±4% at a 95% confidence level.  相似文献   

16.
According to the current technical problems existing in gas and liquid flow measurement for wet gas production, the slotted orifice-couple flow meter was developed and the basic measurement principles for gas and liquid flow was presented. A new wet gas flow meter was developed based on the dual slotted orifice transducer. The flow characteristics of liquid flow through dual slotted orifice plate, the relationship of differential pressure between the dual slotted orifice plate, pressure, temperature, and flow rate of gas/liquid of different aperture ratio were studied. A mathematical measurement model was established to be applied in the flow meter measurement system with dual slotted orifice plate. The model was tested and calibrated by on-site field experiments in the China National Center of Metrology at Daqing Oil field. The results showed that the maximum measurement error of the gas and liquid flow was less than 10% and 15% respectively, when the Gas Volume Fraction (GVF) was greater than 90 vol%. The measurement accuracy of this industrial prototype can meet the requirements of well fluids.  相似文献   

17.
超声波气体流量计的管道模型仿真和误差分析   总被引:9,自引:5,他引:4  
为满足不断发展的超声波气体流量计测量精度的需要,改进传感器的设计精度和有效降低安装测试及样机调试成本,针对制约超声波气体流量计测量精度主要误差源之一的管道流场分析问题,结合计算机建模数值仿真技术及实验技术对其流场设计参数以及弯管安装条件等对超声波测量误差产生原因进行定量分析.理论研究和仿真实验结果表明,可以量化分析气体超声波流量计流场误差产生的原因、范围,并通过限定流场修止系数更有效地降低其测量误差,这项研究对该超声波气体流量计的优化设计和工程应用具有一定的指导意义.  相似文献   

18.
Wet gas metering has become an increasingly important technique for many industries. However, the over-reading phenomenon reduces the accuracy of Differential Pressure meters. This research fills the vacancy of correlations and presents a new correlation for low pressure between 0.82 and 1.52 MPa with a vertically mounted Venturi meter to calculate the over-reading coefficient accurately. Based on the correlational analysis, the over-reading coefficient is a function of the Lockhart-Martinelli parameter, density ratio, and gas Froude number. The constant coefficients in this correlation are obtained by nonlinear regression. Effect of low gas velocity with gas Froude number under 1.5 is taken into consideration as well. The average relative error is 1.9% and the root mean square error is 3.0%. Furthermore, a new method to calculate the over-reading coefficient for industrial applications is put forward due to the difficulties of online measurements of the Lockhart-Martinelli parameter which is substituted with the void fraction. The void fraction is calculated by an empirical correlation using quality and an approximate algorithm is utilized to obtain gas Froude number. For this new method, the average relative error is 2.3% and the root mean square error is 3.7%. This quality-based method will be helpful to resolve the limited applicability of gamma-ray attenuation for wet gas flow metering in industry regarding vertical low pressure conditions.  相似文献   

19.
Orifice plate meters are often used to measure wet gas flows. Research into the wet gas response of the horizontally installed orifice plate meter is discussed in this paper. Consideration is given to the significant influence of the wet gas flow pattern, as this has previously been found to be relevant to the wet gas response of other differential pressure type flow meters. A wet gas flow correlation for 2″ to 4″ orifice plate meters has been developed from multiple data sets from four wet gas flow test facilities. This corrects the liquid induced gas flow rate error for a known liquid flow rate to ±2% at a 95% confidence level.  相似文献   

20.
To gain a deeper understanding of the performance of V-Cone meter in low pressure wet gas measurement, the over-reading of the V-Cone meter was experimentally investigated in the present study. The equivalent diameter ratio of the V-Cone meter is 0.55. The experimental fluids were air and tap water. The operating pressure and the gas volume fraction ranged from 0.1 MPa to 0.4 MPa and 97.52%–100%, respectively. The results showed that the existing V-Cone wet gas correlation, which was developed for the medium and high pressure wet gas cannot be well extended to the low pressure conditions. The Chisholm exponent monotonically decreased with the ratio of liquid-to-gas mass flow rate increasing, and was almost not affected by the gas to liquid density ratio and the gas densiometric Froude number in the present test ranges. A measurement correlation dedicated for the low pressure wet gas was developed. In the present cases, the relative deviation of the gas mass flow rate predicted by the new correlation was within ±4.0% and ±3.0% under the 95% and 90% confidence level, respectively; the average relative deviation was 0.046%. Our results provide insights into the measurement performance of V-Cone meter in low pressure wet gas and may help to develop a more comprehensive wet gas correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号