首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Production of a raw starch-digesting glucoamylase O (GA O) by protease-negative, glycosidase-negative mutant strain HF-15 of Aspergillus awamori var. kawachi was undertaken under submerged culture conditions. The purified GA O was electrophoretically homogeneous and similar to the parent glucoamylase I (GA I) in the hydrolysis curves toward gelatinized potato starch, raw starch, and glycogen and in its thermostability and pH stability, but it was different in molecular weight and carbohydrate content (250,000 and 24.3% for GA O, 90,000 and ca. 7% for GA I, respectively). The chitin-bound GA O hydrolyzed raw starch but the chitin-bound GA I failed to digest raw starch because chitin was adsorbed at the raw starch affinity site of the GA I molecule. The removal of the raw starch affinity site of GA O with subtilisin led to the formation of a modified GA O (molecular weight, 170,000), which hydrolyzed glycogen 100%, similar to GA O and GA I, and was adsorbed onto chitin and fungal cell wall but not onto raw starch, Avicel, or chitosan. The modified GA I (molecular weight, 83,000) derived by treatment with substilisin hydrolyzed glycogen up to only 80% and failed to be adsorbed onto any of the above polysaccharides. The N-bromosuccinimide-oxidized GA O lost its activity toward gelatinized and raw starches, but the abilities to be adsorbed onto raw starch and chitin were preserved. It was thus suggested that both the raw starch affinity site essential for raw starch digestion and the chitin-binding site specific for the binding with chitin in the cell wall could be different from the active site, located in the three respective positions in the GA O molecule.  相似文献   

2.
An extracellular glucoamylase [exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] of Endomycopsis fibuligera has been purified and some of its properties studied. It had a very high debranching activity (0.63). The enzyme was completely adsorbed onto raw starch at all the pH values tested (pH 2.0–7.6). Amylase inhibitor from Streptomyces sp. did not prevent the adsorption of glucoamylase onto raw starch although the enzyme did not digest raw starch in the presence of amylase inhibitor. Sodium borate (0.1 m) eluted only 35% of the adsorbed enzyme from raw starch. The optimum pH for raw starch digestion was 4.5 whereas that of boiled soluble starch hydrolysis was 5.5. Waxy starches were more easily digested than non-waxy starches, and root starches were slowly digested by this enzyme.  相似文献   

3.
Carboxy-terminal deletions were introduced into the raw starch-binding domain (A-515 to R-615) encoded by the gene for glucoamylase I (GAI) from Aspergillus awamori var. kawachi. Genes coding for proteins designated GA596 (A-1 to E-596), GA570 (A-1 to A-570), and GA559 (A-1 to N-559) were constructed and resulted in truncated proteins. All of the mutant genes were expressed heterologously in Saccharomyces cerevisiae. GA596 adsorbed to raw starch and digested it. GA570 and GA559 did not adsorb to raw starch or to an alpha-cyclodextrin-Sepharose CL-4B gel under our experimental conditions. However, GA570 was able to digest raw starch, and the digestion of raw starch by GA570 was inhibited by beta-cyclodextrin. Residue Trp-562 of GAI, which was suggested previously to contribute to formation of an inclusion complex with raw starch, was replaced by Leu (GAW562L), Phe (GAW562F), and Gly (GAW562G). GAW562L and GAW562F adsorbed to raw starch and an alpha-cyclodextrin gel, but GAW562G did not. Although GAW562L digested raw starch to the same extent as wild-type GAI (designated GAY), GAW562F and GAW562G exhibited less ability to digest raw starch. On the basis of our results, it appears that the sequence around Trp-562, PL(W-562)YVTVTLPA, is the minimal sequence necessary for digestion of raw starch and that hydrophobic residue Trp-562 contributes to formation of an inclusion complex. The sequence near Trp-589, which has abundant hydrogen bond-forming residues and the charged amino acid residues needed for stable adsorption to raw starch, probably assists in the formation of the inclusion complex.  相似文献   

4.
A single form of exo-type cellulase (Exo I; MW, 65,000), purified from a Trichoderma viride protease-depressed mutant, HK-75, digested Avicel to cellobiose exowise, and hydrolyzed cellotriose, cellotetraose, and cellopentaose in the strict manner of splitting off by cellobiose units. Exo I, however, hydrolyzed cellohexaose by both cellobiose and cellotriose units. Exo I was proteolyzed by papain into two fragments; GPExo (MW, 9,000) and Exo I' (MW, 56,000). The GPExo intensively adsorbed onto Avicel but did not hydrolyze it. Exo I' had nearly identical activity to that of intact Exo I toward cellooligosaccharides but was almost inert to Avicel in digestion and adsorption. Sequence analysis of N-terminal and C-terminal amino acids showed that GPExo was between Gly435 and Leu496 and Exo I' between Glu1 and Gly434 in Exo I. Exo I therefore consists of two domains, one for adsorption to Avicel, as demonstrated by the Avicel-affinity site, GPExo and the other for the cleavage of glycosidic linkages as demonstrated in Exo I'.  相似文献   

5.
Summary The glucoamylase preparation of Aspergillus niger 19 inhibited the raw starch digestion by it at high enzyme concentration. The inhibitory factor (IF) was isolated from the glucoamylase preparation by heat treatment and purified by DEAE-Sephadex A-25 column chromatography, an initial Sephadex G-50 gel filtration followed by SP-Sephadex C-25 column chromatography (twice) and then second Sephadex G-50 gel filtration. The IF thus purified was homogenous in polyacrylamide gel electrophories. The inhibitory activity of IF increased with the increasing IF concentration but decreased with an increasing quantity of raw starch or enzyme concentration. The IF had no effect on the hydrolysis of boiled soluble starch. It was completely adsorbed onto raw starch. The IF had a molecular weight of about 10,500. It was abundant in hydroxy amino acids such as threonine and serine. Xylose, mannose, glucose, galactose, and galacturonic acid were present in it.  相似文献   

6.
Mutation experiments were performed to decrease the protease productivity of Aspergillus awamori var. kawachi using ultraviolet light and N-methyl-N'-nitro-N-nitrosoguanidine. The selected mutant HF-15 showed reductions in protease productivity of 93%, 84% and 50% in solid wheat bran culture, shaking Medium B and wheat bran cultures, respectively, as compared with the parent. Protease-less mutant HF-15 failed to produce α-mannosidase, and N-acetyl-β-d-glucosaminidase productivity decreased by 35%. Mutant HF-15 specifically produced a high amount of raw starch-adsorbable and raw starch-digestive glucoamylase similar to GA I under all tested cultural conditions. On the contrary, high protease-producing mutant HF-10 produced a glucoamylase with very limited adsorption and digestion capacity on raw corn starch, and lower hydrolysis toward gelatinized potato starch and glycogen that was similar to GA I'.  相似文献   

7.
B. CHATTERJEE, A. GHOSH AND A. DAS. 1992. A mutant strain of Emericella nidulans MNU 82 was isolated by multistep mutation. The β-amylase produced by the mutant was able to digest raw starch. It was readily and strongly adsorbed onto raw starch at pH 5.0. The enzyme to starch ratio was 1950 U/g starch. The enzyme showed no correlation between the capacity of raw starch digestion and adsorption of the enzyme.  相似文献   

8.
A mutant strain of Emericella nidulans MNU 82 was isolated by multistep mutation. The beta-amylase produced by the mutant was able to digest raw starch. It was readily and strongly adsorbed onto raw starch at pH 5.0. The enzyme to starch ratio was 1950 U/g starch. The enzyme showed no correlation between the capacity of raw starch digestion and adsorption of the enzyme.  相似文献   

9.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N'-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher alpha-amylaseactivity than the parent strain under submerged culture at 30 degrees C for 24 h. About 70% of the total alpha-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable alpha-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable alpha-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal alpha-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

10.
Glucoamylase (GA) was immobilized onto polyaniline (PANI)-grafted magnetic poly(2-hydroxyethylmethacrylate-co-glycidylmethacrylate) hydrogel (m-p(HEMA-GMA)-PANI) with two different methods (i.e., adsorption and adsorption/cross-linking). The immobilized enzyme preparations were used for the hydrolysis of “starch” dextrin. The amount of enzyme loading on the ferrogel was affected by the medium pH and the initial concentration of enzyme. The maximum loading capacity of the enzyme on the ferrogel was found to be 36.7 mg/g from 2.0 mg/mL enzyme solution at pH 4.0. The adsorbed GA demonstrated higher activity (59%) compared to adsorbed/cross-linked GA (43%). Finally, the immobilized GA preparations exhibited greater stability against heat at 55 °C and pH 4.5 compared to free enzyme (50 °C and pH 5.5), suggesting that the ferrogel was suitable support for immobilization of glucoamylase.  相似文献   

11.
Raw-starch-digesting alpha-amylase (Amyl III) was purified to an electrophoretically pure state from the extract of a koji culture of Aspergillus awamori KT-11 using wheat bran in the medium. The purified Amyl III digested not only soluble starch but also raw corn starch. The major products from the raw starch using Amyl III were maltotriose and maltose, although a small amount of glucose was produced. Amyl III acted on all raw starch granules that it has been tested on. However, it was considered that the action mode of the Amyl III on starch granules was different from that of glucoamylase judging from the observation of granules under a scanning electron microscope before and after enzyme reaction, and also from the reaction products. Glucoamylase (GA I) was also isolated and it was purified to an electrophoretically pure state from the extract. It was found that the electron micrographic features of the granules after treatment with the enzymes were quite different. A synergistic effect of Amyl III and GA I was observed for the digestion of raw starch granules.  相似文献   

12.
An inhibitory factor (IF) fromAspergillus niger, that inhibited the action of glucoamylase on raw starch, was adsorbed tightly onto raw starch but was almost completely desorbed by 0.02m sodium borate. The IF was a glycoprotein and was partially purified by ion exchange chromatography into three active fractions.  相似文献   

13.
Glucoamylase (GA) from Aspergillus niger was immobilized via ionic adsorption onto DEAE-agarose, Q1A-Sepabeads, and Sepabeads EC-EP3 supports coated with polyethyleneimine (PEI). After optimization of the immobilization conditions (pH, polymer size), it was observed that the adsorption strength was much higher in PEI-Sepabeads than in Q1A-Sepabeads or DEAE-supports, requiring very high ionic strength to remove glucoamylase from the PEI-supports (e.g., 1 M NaCl at pH 5.5). Thermal stability and optimal temperature was marginally improved by this immobilization. Recovered activity depended on the substrate used, maltose or starch, except when very low loading was used. The optimization of the loading allowed the preparation of derivatives with 750 IU/g in the hydrolysis of starch, preserving a high percentage of immobilized activity (around 50%).  相似文献   

14.
A color variant strain ofAureobasidium pullulans (NRRL Y-12974) produced amylase and -glucosidase activities when grown at 28°C for 4 days in liquid culture on a wide variety of carbon sources such as starch, pullulan, glucose, maltose, cyclodextrins, sucrose, xylose, and xylan. An -glucosidase was separated by Q-Sepharose adsorption from the cell-free culture broth and partially purified by hydroxylapatite and octyl-Sepharose chromatography. After ammonium sulfate treatment of the culture supernatant (obtained after Q-Sepharose adsorption), the amylase fraction was separated into three active fractions by hydroxylapatite column chromatography, which were identified as -amylase, glucoamylase A, and glucoamylase B. The glucoamylase A was further purified by octyl-Sepharose column chromatography. The pH optima for the action of -amylase, glucoamylase A, glucoamylase B, and -glucosidase were 5.0, 4.5, 4.0–4.5, and 4.5, respectively. The -amylase and glucoamylase B were fully stable at pH 3.0–6.0, glucoamylase A at pH 4.5–5.5, and -glucosidase at pH 3.5–7.0 for 1 h at 50°C. The optimum temperatures for the action of these enzymes were 55°, 50°–60°, 65°, and 65°C, respectively. The -amylase, glucoamylase A, and glucoamylase B were adsorbed onto raw corn starch and degraded it. Glucoamylase B readily cleaved pullulan. The -glucosidase was not adsorbed onto raw starch and did not degrade it at all. It hydrolyzed both -1,4 and -1,6 linkages in oligosaccharides. All four enzymes did not require any metal ion for activity and were inhibited by cyclodextrins (-and -, 10mm).  相似文献   

15.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher α-amylaseactivity than the parent strain under submerged culture at 30°C for 24 h. About 70% of the total α-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable α-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable α-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal α-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

16.
A domain of glucoamylase 1 from Aspergillus niger which binds to granular starch was produced by proteolytic digestion and purified to apparent homogeneity by extraction with corn starch followed by anion-exchange chromatography and gel filtration. The peptide has a molecular weight of 25,100, contains approximately 38% carbohydrate (w/w) and corresponds to residues 471-616 at the C-terminus of glucoamylase 1. The peptide bound to granular corn starch maximally at 1.08 nmol/mg starch. It inhibited the hydrolysis of granular starch by glucoamylase 1 but had no effect on the hydrolysis of starch in solution.  相似文献   

17.
An inhibitory factor (IF) produced byAspergillus niger strain 19, and which inhibits the action of glucoamylase on starch, has the ability to be tightly adsorbed on to various raw starches, though the amount differs from starch to starch. Based on the hydrolysis of the IF-starch complex by glucoamylase, the inhibitions per unit IF adsorbed are similar for some varieties of starch. The effectiveness ratio of IF (% hydrolysis inhibition per % IF adsorbed on raw starch) for corn, sweet potato, waxy rice and waxy corn starches are 1.1, 1.0, 0.85 and 0.96, respectively. These results support the hypothesis that both glucoamylase and IF are adsorbed on to a common binding site on raw starch. However, the effectiveness ratio of IF for cassava and wheat starches are 0.71 and 1.65, respectively, which differ significantly from other varieties of starch.
Résumé Un inhibiteur (facieur IF) produit par la souche 19 d'Aspergillus niger et qui inhibe l'action de la glucoamylase sur l'amidon a la propriété d'être fortement adsorbé sur dives amidons, bien que la quantité varie d'amidon à amidon. Sur la base de l'hydrolyse du complexe amidon-IF par la glucoamylase, les inhibitions par unité d'IF adsorbé sont sembiables pour quelques variétés d'amidon. Le rapport d'efficience de IF (% d'inhibition de l'hydrolyse par % de IF adsorbé sur l'amidon cru), pour le maïs, la patate douce, et les amidons de riz cireux et de maîs cireux vaut respectivement 1.1, 1.0, 0.85 et 0.96. Ces résultats soutiennent l'hypothèse que tant la glucoamylase que le lacteur IF sont adsorbés sur un site commun de liaison de l'amidon cru. Toutefois, le rapport d'efficience du facteur IF pour les amidons de manioc et de froment valent respectivement 0.71 et 1.65, valeurs significativement différentes de celles pour les aufres variétés d'amidon.
  相似文献   

18.
Summary The effect of an inhibitory factor (IF) fromAspergillus niger 19 on raw starch digestion by pure glucoamylase I of blackAspergillus, pure glucoamylae ofRhizopus niveus, bacterial -amylase, fungal -amylase and various combination was investigated. The IF caused higher inhibition of raw starch hydrolysis by the combined action of glucoamylase and fungal -amylase than of hydrolysis by the individual enzymes. A protein moiety of IF might play an active part in this inhibition phenomenon. The IF was bound to starch granules, preventing hydrolysis by the enzymes, and caused decreased raw starch hydrolysis yields.  相似文献   

19.
Sphingomyelinase of Bacillus cereus proved to be specifically adsorbed onto mammalian erythrocyte membranes in the presence of either Ca2+ or Ca2+ plus Mg2+ in the order of sphingomyelin content; i.e., sheep, bovine greater than porcine greater than rat erythrocytes. No appreciable adsorption was observed in the presence of Mg2+ alone nor in the absence of divalent metal ions. The enzyme adsorption onto bovine erythrocytes was dependent upon the incubation temperature. By shifting the temperature from 37 to 0 degrees C, sphingomyelinase once adsorbed onto the surface of bovine erythrocytes was released into the supernatant. Ca2+ proved to be an essential factor for the enzyme adsorption: The addition of 1 mM Ca2+ enhanced the adsorptive process, but inhibited sphingomyelin hydrolysis and hot or hot-cold hemolysis of erythrocytes, while the addition of 1 mM Ca2+ plus 1 mM Mg2+ enhanced sphingomyelin breakdown and hemolysis as well as the enzyme adsorption. However, when the amount of sphingomyelin fell off to 0.2-0.7 nmol/ml or less by the action of sphingomyelinase, the enzyme once adsorbed was completely released from the surface of erythrocytes. The result indicates that the major binding site for sphingomyelinase is sphingomyelin. In the presence of 1 mM Mg2+ alone, the enzymatic hydrolysis of sphingomyelin and hemolysis proceeded whereas the enzyme adsorption was not encountered during 60 min incubation at 37 degrees C. The change in the molar ratio of Ca2+ to Mg2+ affected the enzyme adsorption and sphingomyelin breakdown; the higher Ca2+ enhanced the adsorption whereas the higher Mg2+ stimulated sphingomyelin hydrolysis.  相似文献   

20.
An active derivative (mol. wt. 48,000) of Aspergillus sp. K-27 glucoamylase (mol. wt. 76,000) was obtained by limited proteolysis with subtilisin. The amino acid sequences of native and modified enzymes at the N-termini were Ala-Gly-Gly-Thr-Leu-Asp and Ala-Val-Leu, respectively. The proteolysis greatly decreased the affinity of the enzyme for amylopectin and glycogen, but not for oligosaccharides. It also reduced the ability of the enzyme to degrade raw starch, abolished the ability of the enzyme to adsorb onto starch granules, and eliminated the synergistic action of the enzyme in the hydrolysis of starch granules with alpha-amylase. These findings imply that the enzyme has a specific affinity site for polysaccharide substrates besides the catalytic site, i.e., a starch-binding site, and that the former is removed by proteolysis. The extent of the reduction in the activity for raw starches caused by the modification varied with the starch source, as the modified enzyme digested raw potato starch better than either raw corn or sweet potato starches. A new method for evaluation of the raw starch-digesting activity of glucoamylase is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号